14.若集合A={x|x2<2x+3},集合B={x|x<2},則A∩B等于(  )
A.(-3,1)B.(-3,2)C.(-1,1)D.(-1,2)

分析 求出A中不等式的解集確定出A,找出A與B的交集即可.

解答 解:由A中不等式變形得:x2-2x-3<0,即(x-3)(x+1)<0,
解得:-1<x<3,即A=(-1,3),
∵B=(-∞,2),
∴A∩B=(-1,2),
故選:D.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列求導(dǎo)運算正確的是( 。
A.(log2x)′=$\frac{1}{xln2}$B.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$C.[sin(-x)]′=cos(-x)D.(x2cosx)′=-2sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.各項均為正數(shù)的等差數(shù)列{an}中,a5a10=25,則前14項和S14的最小值為(  )
A.40B.70C.75D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中的假命題是( 。
A.?x∈R,lgx=0B.?x∈R,x3>0C.?x∈R,2x>0D.?x∈R,x2+2x-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在某次測量中得到E的樣本數(shù)據(jù)如下:80,82,82,84,84,84,84,86,86,86,86.若F的樣本數(shù)據(jù)恰好是E的樣本數(shù)據(jù)都減去2后得到的數(shù)據(jù),則關(guān)于E,F(xiàn)兩樣本數(shù)據(jù)特征的下列說法中,正確的是( 。
A.E,F(xiàn)樣本數(shù)據(jù)的眾數(shù)為84B.E,F(xiàn)樣本數(shù)據(jù)的方差相同
C.E,F(xiàn)樣本數(shù)據(jù)的平均數(shù)相同D.E,F(xiàn)樣本數(shù)據(jù)的中位數(shù)相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知tanα=3,則sinαcosα=(  )
A.$\frac{3}{10}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=2$\sqrt{3}$cos2ωx+2sinωcosωx-$\sqrt{3}$(ω>0),其圖象上相鄰兩個最高點之間的距離為$\frac{2}{3}$π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個單位,再將所得圖象上各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到y(tǒng)=g(x)的圖象,求g(x)在[0,$\frac{4π}{3}$]上的單調(diào)增區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,求方程g(x)=t(0<t<2)在[0,$\frac{8}{3}$π]內(nèi)所有實根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex+ax-1 (a∈R).
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)函數(shù)g(x)=$\frac{{e}^{2}({x}^{2}-a)}{f(x)-ax+1}$,當(dāng)g(x)有兩個極值點x1,x2(x1<x2)時,總有λ[(2x1-x12)e${\;}^{2-{x}_{1}}$-a]-x2g(x1)≥0,求實數(shù)λ的值或取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若四面體的三視圖如圖所示,則該四面體的外接球表面積為9π.

查看答案和解析>>

同步練習(xí)冊答案