5.等差數(shù)列{an}中,S2=4,S4=9,則S6=15.

分析 由題意可得首項(xiàng)和公差的方程組,解方程組代入求和公式計(jì)算即可.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
則S2=2a1+d=4①,
S4=4a1+$\frac{4×3}{2}$d=9②,
聯(lián)立①②解得
a1=$\frac{15}{8}$,d=$\frac{1}{4}$;
∴S6=6a1+$\frac{6×5}{2}$d=6×$\frac{15}{8}$+$\frac{30}{2}$×$\frac{1}{4}$=15.
故答案為:15.

點(diǎn)評(píng) 本題考查了等差數(shù)列求和公式的應(yīng)用問題,求出數(shù)列的首項(xiàng)和公差是解題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知命題p:關(guān)于實(shí)數(shù)x的方程4x2-4mx+m2-1=0的一根比1大另一根比1。幻}q:函數(shù)f(x)=2x-1-m在區(qū)間(2,+∞)上有零點(diǎn).
(1)命題“p或q”真,“p且q”假,求實(shí)數(shù)m的取值范圍.
(2)當(dāng)命題P為真時(shí),實(shí)數(shù)m的取值集合為集合M,若命題:?x∈M,x2-ax+1≤0為真,則求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若集合A={y|y=2x+2},B={x|-x2+x+2≥0},則( 。
A.A⊆BB.A∪B=RC.A∩B={2}D.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)命題P:函數(shù)f(x)=lg(x2-ax+$\frac{1}{16}$a)的定義域?yàn)镽;命題q:不等式3x-9x<a對(duì)一切實(shí)數(shù)x均成立,如果命題p和q都是假命題,則實(shí)數(shù)a的取值范圍為a≤0或a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若tana=-1,且0°≤a≤180°,則a=135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={(x,y)|$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1},集合B={(x,y)|(m+1)x+(2m-1)y-3m=0,m∈R}.
(1)求證:無論m取何值時(shí),集合B中必有一個(gè)確定的元素;
(2)求集合A∩B的子集個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求${({\frac{5}{2x}-\frac{2}{5}\root{3}{x^2}})^n}$的展開式中的常數(shù)項(xiàng),其中n是7777-10除以19的余數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知 sinα=$\frac{3}{5}$,且α是第二象限角,求 cosα,tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a為實(shí)數(shù),記函數(shù)f(x)=ax-ax3(x∈[$\frac{1}{2}$,1])的圖象為C,如果任何斜率不小于1的直線與C都至多有一個(gè)公共點(diǎn),則a的取值范圍是[-$\frac{1}{2}$,4].

查看答案和解析>>

同步練習(xí)冊(cè)答案