8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1-x,x>0}\\{x+2,x≤0}\end{array}\right.$,則f(f(2))=1.

分析 根據(jù)2>0,代入第一個(gè)解析式求出函數(shù)值,判斷即可確定出所求式子的值.

解答 解:∵2>0,∴f(2)=1-2=-1,
∵-1<0,∴f(-1)=-1+2=1,
則f(f(2))=f(-1)=1,
故答案為:1.

點(diǎn)評(píng) 此題考查了函數(shù)的值,弄清f(x)解析式表示的意義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,-2),$\overrightarrow{c}$=$\overrightarrow{a}$+k$\overrightarrow$,$\overrightarrowvf3y6gz$=$\overrightarrow{a}$-$\overrightarrow$,若$\overrightarrow{c}$⊥$\overrightarrow5ilmpqq$,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$a,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+cosθ}\\{y=-1+sinθ}\end{array}\right.$(θ為參數(shù)).
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)當(dāng)C1與C2有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.計(jì)算(${\frac{1}{27}}$)${\;}^{-\frac{1}{3}}}$+(π-1)0+2log31-lg2-lg5=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.觀察下列三角形數(shù)表,假設(shè)第n行的第二個(gè)數(shù)為an(n≥2,n∈N),
(1)依次寫出第六行的所有6個(gè)數(shù)字;
(2)歸納出an+1與an的關(guān)系式,并利用遞推關(guān)系式求出an的通項(xiàng)公式(可以不證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出以下數(shù)對(duì)序列:
(1,1)
(1,2)(2,1)
(1,3)(2,2)(3,1)
(1,4)(2,3)(3,2)(4,1)

記第i行的第j個(gè)數(shù)對(duì)為aij,如:a43=(3,2),則anm=(  )
A.(m,n-m+1)B.(m-1,n-m)C.(m-1,n-m+1)D.(m,n-m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.有下列結(jié)論:
①y=2014$\sqrt{x-3}$+$\sqrt{2-x}$是函數(shù);      
②設(shè)集合M={(x,y)|${\frac{y+2}{x-2}$=1},N={(x,y)|ax+y+2=0},若M∩N=∅,則a=-1;
③函數(shù)f(x)滿足f(x)-2f($\frac{1}{x}$)=x,則f(2)=-1;
④不等式(x-5)2$\frac{{{x^2}-7x+12}}{{-|x-2{|^2}}}$≥0的解集為{x|3≤x≤4};
⑤函數(shù)y=$\frac{3x-2}{2x+1}$(x≥1)的值域?yàn)閇$\frac{1}{3},\frac{3}{2}$).
以上結(jié)論正確的有③⑤(將所有正確的結(jié)論序號(hào)填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.焦點(diǎn)是(0,±2),且與雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1有相同漸近線的雙曲線的方程是( 。
A.x2-$\frac{{y}^{2}}{3}$=1B.y2-$\frac{{x}^{2}}{3}$=1C.x2-y2=2D.y2-x2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.“a=b”是“2a=2b”的充要條件.(從“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中選擇適當(dāng)?shù)囊环N填空)

查看答案和解析>>

同步練習(xí)冊(cè)答案