2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+a,x<1}\\{{x}^{2},x≥1}\end{array}\right.$存在最小值,則當(dāng)實數(shù)a取最小值時,f[f(-2)]=( 。
A.-2B.4C.9D.16

分析 函數(shù)f(x)=$\left\{\begin{array}{l}{-x+a,x<1}\\{{x}^{2},x≥1}\end{array}\right.$存在最小值,可得-1+a≥12,解得a≥2.再利用分段函數(shù)的性質(zhì)即可得出.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-x+a,x<1}\\{{x}^{2},x≥1}\end{array}\right.$存在最小值,∴-1+a≥12,解得a≥2.
則當(dāng)實數(shù)a取最小值2時,
x<1時,f(x)=-x+2.
∴f(-2)=4.
f[f(-2)]=f(4)=42=16.
故選:D.

點評 本題考查了分段函數(shù)的性質(zhì)及其應(yīng)用、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=$\sqrt{x}$的反函數(shù)是f-1(x),則f-1(4)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,定義在[-2,2]的偶函數(shù)f(x)的圖象如圖所示,函數(shù)g(x)=f(x)-$\frac{1}{4}x+\frac{1}{2}$的零點個數(shù)為(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.二項式($\sqrt{3}$x+$\root{3}{2}$)n(n∈N*)展開式中只有一項的系數(shù)為有理數(shù),則n可能取值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C的圓心為點D(2,3),且與y軸相切,直線y=kx-1與圓C交于M,N兩點.
(Ⅰ)求圓C的方程;
(Ⅱ)若DM⊥DN,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在△ABC中,D是BC上的點,AC=3,CD=2,AD=$\sqrt{7}$,sinB=$\frac{\sqrt{7}}{7}$.
(Ⅰ)求角C的大;
(Ⅱ)求邊AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某公司擬設(shè)計一個扇環(huán)形狀的花壇(如圖所示),該扇環(huán)是由以點O為圓心的兩個同心圓弧和延長后通過點AD的兩條線段圍成.設(shè)圓弧$\widehat{AB}$、$\widehat{CD}$所在圓的半徑分別為f(x)、R米,圓心角為θ(弧度).
(1)若θ=$\frac{π}{3}$,r1=3,r2=6,求花壇的面積;
(2)設(shè)計時需要考慮花壇邊緣(實線部分)的裝飾問題,已知直線部分的裝飾費用為60元/米,弧線部分的裝飾費用為90元/米,預(yù)算費用總計1200元,問線段AD的長度為多少時,花壇的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2sin(ωx+φ)(-π<φ<0,ω>0)的圖象關(guān)于直線$x=\frac{π}{6}$對稱,且兩相鄰對稱中心之間的距離為$\frac{π}{2}$.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)+log2k=0在區(qū)間$[0,\frac{π}{2}]$上總有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從5名男同學(xué),4名女同學(xué)中任選5人參加一次夏令營,其中男同學(xué),女同學(xué)均不少于2人的概率是( 。
A.$\frac{13}{63}$B.$\frac{50}{63}$C.$\frac{43}{63}$D.$\frac{11}{63}$

查看答案和解析>>

同步練習(xí)冊答案