A. | $\frac{π}{4}$ | B. | 1-$\frac{π}{4}$ | C. | $\frac{{\sqrt{3}π}}{24}$ | D. | $1-\frac{{\sqrt{3}π}}{24}$ |
分析 以菱形ABCD的各個(gè)頂點(diǎn)為圓心、半徑為1作圓如圖所示,可得當(dāng)該點(diǎn)位于圖中陰影部分區(qū)域時(shí),它到四個(gè)頂點(diǎn)的距離均大于1.因此算出菱形ABCD的面積和陰影部分區(qū)域的面積,利用幾何概型計(jì)算公式加以計(jì)算,即可得到所求的概率.
解答 解:分別以菱形ABCD的各個(gè)頂點(diǎn)為圓心,作半徑為1的圓,如圖所示.
在菱形ABCD內(nèi)任取一點(diǎn)P,則點(diǎn)P位于四個(gè)圓的外部時(shí),
滿足點(diǎn)P到四個(gè)頂點(diǎn)的距離均大于1,即圖中的陰影部分區(qū)域
∵S菱形ABCD=AB•BCsin120°=4×4×$\frac{\sqrt{3}}{2}$=8$\sqrt{3}$,
∴S陰影=S菱形ABCD-S空白=8$\sqrt{3}$-π×12=8$\sqrt{3}$-π.
因此,該點(diǎn)到四個(gè)頂點(diǎn)的距離大于1的概率P=1-$\frac{\sqrt{3}π}{24}$,
故選D.
點(diǎn)評(píng) 本題主要考查幾何概型的概率的計(jì)算,根據(jù)對(duì)應(yīng)分別求出對(duì)應(yīng)區(qū)域的面積是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“?x∈R.ex>0”的否定是“?x∈R,ex>0” | |
B. | 命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個(gè)零點(diǎn)”的逆命題是真命題 | |
C. | “x2+2x≥ax在x∈[1,2]上恒成立”?“對(duì)于x∈[1,2]有(x2+2x)min≥(ax)max” | |
D. | 命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一、三象限角 | B. | 第二、四象限角 | C. | 第二、三象限角 | D. | 第一、四象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com