分析 (1)$\frac{y-2}{x-1}$表示圓上的點(diǎn)P(x,y)與點(diǎn)M(1,2)連線的斜率,設(shè)為k,則過(guò)點(diǎn)M的圓的切線方程為y-2=k(x-1),由圓心到切線的距離等于半徑,求得k的值,可得$\frac{y-2}{x-1}$的最大值和最小值.
(2)令t=x-2y,則當(dāng)圓(x+2)2+y2=1和此直線相切時(shí),t取得最值.再根據(jù)圓心(-2,0)到直線x-2y-t=0的距離為1,求得t的值,即為所求.
(3)求出(-2,0)與(1,1)的距離為$\sqrt{9+1}$=$\sqrt{10}$,即可求(x-1)2+(y-1)2的最大值和最小值.
解答 解:(1)$\frac{y-2}{x-1}$表示圓上的點(diǎn)P(x,y)與點(diǎn)M(1,2)連線的斜率,
設(shè)為k,則過(guò)點(diǎn)M的圓的切線方程為y-2=k(x-1),
即 kx-y+2-k=0,由圓心到切線的距離等于半徑,可得 $\frac{|-2k-0+2-k|}{\sqrt{{k}^{2}+1}}$=1,求得k=$\frac{3}{4}$±$\frac{\sqrt{3}}{4}$,
故$\frac{y-2}{x-1}$的最大值為$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$,最小值為$\frac{3}{4}$-$\frac{\sqrt{3}}{4}$.
(2)令t=x-2y,即y=$\frac{1}{2}$x-$\frac{1}{2}$t,表示斜率為$\frac{1}{2}$、在y軸上的截距為-$\frac{t}{2}$的直線,
故當(dāng)此直線和圓(x+2)2+y2=1相切時(shí),t取得最值.
由圓心(-2,0)到直線x-2y-t=0的距離為半徑1,可得$\frac{|-2-0-t|}{\sqrt{5}}$=1,
求得t=-2-$\sqrt{5}$,或t=-2+$\sqrt{5}$,
故t=x-2y的最大值為-2+$\sqrt{5}$,t=x-2y的最小值為-2-$\sqrt{5}$.
(3)(-2,0)與(1,1)的距離為$\sqrt{9+1}$=$\sqrt{10}$,
∴(x-1)2+(y-1)2的最大值為($\sqrt{10}$+1)2=11+2$\sqrt{10}$,最小值為($\sqrt{10}$-1)2=11-2$\sqrt{10}$.
點(diǎn)評(píng) 本題主要考查直線的斜率公式,直線和圓相切的性質(zhì),點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 14 | B. | $\frac{{21\sqrt{3}}}{2}$ | C. | 22 | D. | $\frac{{27\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
男 | 女 | 總計(jì) | |
滿意 | 50 | 30 | 80 |
不滿意 | 10 | 20 | 30 |
總計(jì) | 60 | 50 | 110 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{341}{25}$,77] | B. | [$\frac{441}{25}$,81] | C. | [$\sqrt{37}$,77] | D. | [$\frac{1}{5}$,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com