A. | [$\frac{341}{25}$,77] | B. | [$\frac{441}{25}$,81] | C. | [$\sqrt{37}$,77] | D. | [$\frac{1}{5}$,5] |
分析 把$\overrightarrow{PE}•\overrightarrow{PF}$轉(zhuǎn)化為($\overrightarrow{NE}$-$\overrightarrow{NP}$)•($\overrightarrow{NF}$-$\overrightarrow{NP}$)=$\overrightarrow{NE}$•$\overrightarrow{NF}$-$\overrightarrow{NP}$•($\overrightarrow{NE}$+$\overrightarrow{NF}$)+$\overrightarrow{NP}$2=-|NE|•|NF|•cosπ-0+|NP|2=-4+|NP|2.
再結(jié)合|NP|的范圍即可求出結(jié)論.
解答 解:$\overrightarrow{PE}•\overrightarrow{PF}$=($\overrightarrow{NE}$-$\overrightarrow{NP}$)•($\overrightarrow{NF}$-$\overrightarrow{NP}$)
=$\overrightarrow{NE}$•$\overrightarrow{NF}$-$\overrightarrow{NP}$•($\overrightarrow{NE}$+$\overrightarrow{NF}$)+$\overrightarrow{NP}$2
=-|NE|•|NF|•cosπ-0+|NP|2
=-4+|NP|2.
點N(1,0)到直線$\frac{x}{8}+\frac{y}{6}$=1的距離為$\frac{|6-48|}{\sqrt{36+64}}$=$\frac{21}{5}$,
∵點P(x,y)是曲線$\frac{|x|}{8}+\frac{|y|}{6}=1$上的動點,
∴|NP|∈[$\frac{21}{5}$,9]
∴$\overrightarrow{PE}•\overrightarrow{PF}$∈[$\frac{341}{25}$,77].
故選:A.
點評 本題主要考查圓的基本性質(zhì).解決本題的關(guān)鍵在于會把所求問題轉(zhuǎn)化.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 81π | B. | 125π | C. | (41+7$\sqrt{145}$)π | D. | (73+7$\sqrt{145}$)π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com