分析 首先通過類比可以得出y=sin3x在[0,π]上的面積.設(shè)t=x-$\frac{π}{3}$,t∈[0,π],則y=sin3t+2,得到封閉圖形的面積.
解答 解:設(shè)t=x-$\frac{π}{3}$,t∈[0,π],則y=sin3t+2,∵函數(shù)y=sinnx在[0,$\frac{π}{2n}$]上的面積為$\frac{1}{n}$(n∈N*),∴對于函數(shù)y=sin3x而言,n=3,
∴y=sin3x在[0,$\frac{π}{6}$]上的面積為$\frac{1}{3}$;所以在[0,$\frac{π}{3}$]的面積為$\frac{2}{3}$,在[0,π]的面積為2;
∴y=sin(3x-π)+2在$[\frac{π}{3},\frac{4π}{3}]$上的面積為2π+2,
故答案為:2π+2;
點(diǎn)評 本題考查了三角函數(shù)與封閉圖形的面積;在解題過程中,尋找解題的突破口,往往離不開類比聯(lián)想,我們在解題中,要進(jìn)一步通過概念類比、性質(zhì)類比、結(jié)構(gòu)類比以及方法類比等思維訓(xùn)練途徑,來提高類比推理的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32n-1 | B. | $\frac{{3}^{2n}-1}{4}$ | C. | $\frac{3({3}^{2n}-1)}{4}$ | D. | $\frac{3({3}^{n}-1)}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0] | B. | (0,+∞) | C. | [1,+∞) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 16 | C. | 14 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥b,a⊥α,則b⊥α | B. | 若a⊥β,a⊥α,則α∥β | ||
C. | 若a⊥α,a?β,則α⊥β | D. | 若a∥α,α∩β=b,則a∥b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com