13.已知函數(shù)f(x)=x3-ax2(其中a是實(shí)數(shù)),且f′(1)=-3.
(1)求a的值及曲線y=f(x)在點(diǎn)(1,f(x))處的切線方程;
(2)求f(x)在區(qū)間[-1,3]上的最小值.

分析 (1)求導(dǎo)函數(shù),利用f′(1)=3,確定a的值,從而可得切點(diǎn)坐標(biāo),即可求得切線的方程;
(2)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,即可求得函數(shù)在區(qū)間[0,2]上的最大值.

解答 解:(1)由于函數(shù)f(x)=x3-ax2,則可得f′(x)=3x2-2ax,
∵f′(1)=-3,
∴3-2a=-3,
∴a=3
又當(dāng)a=3時,f(x)=x3-3x2,
∴f(1)=-2,
∴曲線y=f(x)在(1,f(1))處的切線方程為y+2=-3(x-1),即3x+y-1=0.
(2)由于f′(x)=3x2-6x=3x(x-2),x∈[-1,3]
令f′(x)=0,解得x=0或x=2,
當(dāng)f′(x)>0時,即-1≤x<0,或2<x≤3,函數(shù)單調(diào)遞增,
當(dāng)f′(x)<0時,即0<x<2,函數(shù)單調(diào)遞減,
當(dāng)x=2時,函數(shù)有極小值,極小值為f(2)=-4,
∵f(-1)=-4,
∴f(x)在區(qū)間[-1,3]上的最小值為-4.

點(diǎn)評 本題考查導(dǎo)數(shù)知識的運(yùn)用,考查切線方程,考查函數(shù)的最值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.第26屆世界大學(xué)生夏季運(yùn)動會將于2011年8月12日到23日在深圳舉行,為了搞好接待工作,組委會在某學(xué)院招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm):
若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有“女高個子”才擔(dān)任“禮儀小姐”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?
(2)若從所有“高個子”中選3名志愿者,用ξ表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=x2+2ax-1在區(qū)間(-∞,$\frac{3}{2}$]上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{3}{2}$]B.[-$\frac{3}{2}$,+∞)C.[$\frac{3}{2}$,+∞)D.(-∞,-$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=x3-3x+3-$\frac{x}{e^x}$-a,若不等式f(x)≤0有解.則實(shí)數(shù)a的最小值為( 。
A.1-$\frac{1}{e}$B.2-$\frac{2}{e}$C.1+2e2D.$\frac{2}{e}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}$x2-lnx.
(1)求f(x)的單調(diào)區(qū)間;
(2)求證:x>1時,f(x)<$\frac{2}{3}$x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(x+1)-x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若x>-1,求證:ln(x+1)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx.
(1)當(dāng)a=2時,求函數(shù)h(x)=f(x)-g(x)的最小值;
(2)當(dāng)a>0,對任意x≥1,不等式f(x)-g(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圓x2+(y-3)2=r2與直線y=$\sqrt{3}$x+1有兩個交點(diǎn),則正實(shí)數(shù)r的值可以為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案