精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=e-x,曲線y=f(x)過點(1,0)的切線方程為    
【答案】分析:欲求在點(1,0)處的切線方程,只須求出其斜率的值即可,故先利用導數求出在x=1處的導函數值,再結合導數的幾何意義即可求出切線的斜率.從而問題解決.
解答:解:∵f(x)=e-x,∴f/(x)=-e-x,
設切點為P(x,y),則切線的斜率為,
,
∴切線方程為,由于切線過點(1,0),
,
∴切線方程為y=-x+1.
故答案為:x+y-1=0.
點評:本小題主要考查互相平行的直線的斜率間的關系、導數的幾何意義、利用導數研究曲線上某點切線方程等基礎知識,考查運算求解能力.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數x從小到大排成數列{xn}.求證:數列{f(xn)}為等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區(qū)二模)已知函數f(x)=e|x|+|x|.若關于x的方程f(x)=k有兩個不同的實根,則實數k的取值范圍是( �。�

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•菏澤一模)已知函數f(x)=e|lnx|-|x-
1
x
|,則函數y=f(x+1)的大致圖象為( �。�

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(x2+x+1).
(Ⅰ)求函數f(x)的單調遞減區(qū)間;
(Ⅱ)求函數f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案