判斷方程log2x+x2=0在區(qū)間[
1
2
,1]內(nèi)有沒有實數(shù)根?為什么?
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的連續(xù)性以及函數(shù)的值結(jié)合函數(shù)的零點判定定理,求解即可.
解答: 解:方程log2x+x2=0在區(qū)間[
1
2
,1]內(nèi)有實數(shù)根,
理由如下:
設(shè)f(x)=log2x+x2
∵f(
1
2
)=log2
1
2
+(
1
2
2=-1+
1
4
=-
3
4
<0,
f(1)=log21+1=1>0,
∴f(
1
2
)•f(1)<0,
函數(shù)f(x)=log2x+x2的圖象在區(qū)間[
1
2
,1]上是連續(xù)的,
因此,f(x)在區(qū)間[
1
2
,1]內(nèi)有零點,
方程log2x+x2=0在區(qū)間[
1
2
,1]內(nèi)有實數(shù)根.
點評:本題考查函數(shù)的零點以及零點判定定理的應(yīng)用,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=2loga(x+2)+log 
1
a
(x2+4x)(a>0,a≠1),試討論函數(shù)在區(qū)間(1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面內(nèi),設(shè)A,B,O為定點,P為動點,則下列集合分別表示什么圖形:
(1){P|PA=PB};
(2){P|PO=1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
6
)-cos2x-
1
2
cos2x+
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期和在區(qū)間[0,
π
2
]上的取值范圍;
(Ⅱ)△ABC中,設(shè)角A,B,C所對的邊分別為a,b,c,若f(B)=1,a+c=4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x丨x2-3x+2=0},B={x丨a-1<x<2a+3},A∩B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過市場調(diào)查發(fā)現(xiàn),某商品在60天內(nèi)的日銷售價和日銷售量都是時間x(天)的一次函數(shù),其中2天的銷售價和銷售量如下表所示:
時間x(天)第12天第36天
日銷售價f(x)(元/件)3628
日銷售量g(x)(件)1824
(1)寫出該商品的日銷售價f(x)和日銷售量g(x)與時間x的函數(shù)表達式;
(2)求日銷售額y(元)與時間的函數(shù)關(guān)系式,并求出日銷售額最高的是哪一天?最高日銷售額是多少?(日銷售額=日銷售價×日銷售量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x丨3≤x<7},B={x丨2<x<10},求∁R(A∪B),∁R(A∩B),(∁RA)∩B,A∪(∁RB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
1-x2,x≤1
x2+x-2,x>1
,則f(4)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合{1,2,3,…,n}(n∈N*,n≥3),若該集合具有下列性質(zhì)的子集:每個子集至少含有2個元素,且每個子集中任意兩個元素之差的絕對值大于1,則稱這些子集為T子集,記T子集的個數(shù)為an
(1)若an=7,則n=
 
;
(2)a10=
 

查看答案和解析>>

同步練習冊答案