【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)求函數(shù)的極值;
(2)當(dāng)時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)極小值為,無極大值;(2).
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并結(jié)合零點存在性定理求解.
(1)由題可得函數(shù)的定義域為,,
令,可得;令,可得,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
所以函數(shù)在處取得極小值,極小值為,無極大值.
(2)即,即,
因為當(dāng)時,關(guān)于的不等式恒成立,
所以當(dāng)時,.
令,,則,
設(shè),易知函數(shù)在上單調(diào)遞增,
又,,
所以存在,使得,即,
所以當(dāng)時,;當(dāng)時,,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
由可得,
所以,,,
由(1)知,函數(shù)在在上單調(diào)遞增,所以,,
所以,所以,
故實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,AB=1,BC=2,AC,PC,PA,PB,E是線段BC的中點.
(1)求點C到平面APE的距離d;
(2)求二面角P﹣EA﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是
A. 利潤最高的月份是2月份,且2月份的利潤為40萬元
B. 利潤最低的月份是5月份,且5月份的利潤為10萬元
C. 收入最少的月份的利潤也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,并使得它與直角坐標系有相同的長度單位,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設(shè)曲線與直線交于、兩點,且點的坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每當(dāng)《我心永恒》這首感人唯美的歌曲回蕩在我們耳邊時,便會想起電影《泰坦尼克號》中一暮暮感人畫面,讓我們明白了什么是人類的“真、善、美”.為了推動我市旅游發(fā)展和帶動全市經(jīng)濟,更為了向外界傳遞遂寧人民的“真、善、美”.我市某地將按“泰坦尼克號”原型比例重新修建.為了了解該旅游開發(fā)在大眾中的熟知度,隨機從本市歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該旅游開發(fā)將在我市哪個地方建成?”,統(tǒng)計結(jié)果如下表所示:
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 |
(1)求出的值;
(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);
(3)在(2)中抽取的人中隨機抽取人,求所抽取的人中恰好沒有年齡在段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,M是橢圓C的上頂點,,F(xiàn)2是橢圓C的焦點,的周長是6.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過動點P(1,t)作直線交橢圓C于A,B兩點,且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點,并求此定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù),傾斜角),曲線C的參數(shù)方程為(為參數(shù),),以坐標原點為極點,軸正半軸為極軸建立極坐標系。
(1)寫出曲線的普通方程和直線的極坐標方程;
(2)若直線與曲線恰有一個公共點,求點的極坐標。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左焦點為F(﹣1,0),離心率為,過點F的直線l與橢圓C交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點F不與坐標軸垂直的直線交橢圓C于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com