分析 (1)設(shè)AD的中點(diǎn)為E,證明PA⊥平面PCD,即可證明PA⊥PC;
(2)連接AC交BD于F,球心O在底面的射影必為點(diǎn)F,取截面PEF,利用勾股定理求出球的半徑,即可求四棱錐P-ABCD的外接球的體積.
解答 證明:(1)設(shè)AD的中點(diǎn)為E,則
∵PA=PD,
∴PE⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PE⊥平面ABCD,
∵PA在平面ABCD內(nèi)的射影為AE,AE⊥CD,
∴PA⊥CD,
∵PA⊥PD,CD∩PD=D,
∴PA⊥平面PCD
∴PA⊥PC;
解:(2)連接AC交BD于F,球心O在底面的射影必為點(diǎn)F,取截面PEF,PE=$\sqrt{3}$,EF=1.
假設(shè)OF=x,則由OA2=x2+4=1+$(\sqrt{3}-x)^{2}$得x=0,
∴球的半徑為2,
∴四棱錐P-ABCD的外接球的體積為$\frac{4}{3}π•{2}^{3}$=$\frac{32}{3}π$.
點(diǎn)評 本題考查平面與平面垂直的性質(zhì),考查線面垂直的判定與性質(zhì),考查四棱錐P-ABCD的外接球的體積,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (-∞,1) | C. | (-∞,1] | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{e}$-1 | B. | 2-$\frac{2}{e}$ | C. | 1+2e2 | D. | 1-$\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com