10.如圖,在棱長為2的正方體中,直線AC1和B1C的夾角是90°  

分析 先根據(jù)條件得到側(cè)面BCC1B1是正方形,進而得到對角線垂直,再結(jié)合AB⊥B1C;得到B1C⊥平面ABC1,進而得到結(jié)論.

解答 解:連接BC1,
因為棱長為2的正方體,
所以側(cè)面BCC1B1是正方形;
所以:BC1⊥B1C;
又AB⊥B1C;
且AB∩BC1=B;
∴B1C⊥平面ABC1
∴AC1⊥B1C.
即異面直線AC1和B1C所成的角是90°.
故答案為:90°.

點評 本題主要考察異面直線及其所成的角.本題把其轉(zhuǎn)化為證明線面垂直來求.在證明線線垂直時,一般是先證線線垂直,得到線面垂直,進而得到線線垂直.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示,PQ為⊙O的切線,切點為Q,割線PEF過圓心O,且QM=QN.
(Ⅰ)求證:PF•QN=PQ•NF;
(Ⅱ)若QP=QF=$\sqrt{3}$,求PF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x),g(x)分別由如表給出:
x123
f(x)231
x123
g(x)312
則f[g(2)]=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.“x<2”是“x2+x-6<0”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.直線2x-3y+1=0的一個方向向量是(1,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某班級有男生20人,女生30人,從中抽取10人作為樣本,恰好抽到了4個男生、6個女生,則下列命題正確的是( 。
A.該抽樣可能是簡單隨機抽樣
B.該抽樣一定不是系統(tǒng)抽樣
C.該抽樣中女生被抽到的概率大于男生被抽到的概率
D.該抽樣中女生被抽到的概率小于男生被抽到的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,拋物線C1:y2=4x的焦點到準線的距離與橢圓C2:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的長半軸相等,設(shè)橢圓的右頂點為A,C1,C2在第一象限的交點為B,O為坐標原點,且△OAB的面積為$\frac{{2\sqrt{6}}}{3}$.
(1)求橢圓C2的標準方程;
(2)若過點A作直線l交C1于C,D兩點.
①求證:∠COD恒為鈍角;
②射線OC,OD分別交C2于E,F(xiàn)兩點,記△OEF,△OCD的面積分別為S1,S2,問是否存在直線l,使得3S2=13S1?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)數(shù)列{an}的前n項和為Sn(n∈N*),若a1=1,an+1=2Sn+1,則S5=121.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.sin410°sin550°-sin680°cos370°=( 。
A.$-\frac{1}{2}$B.-cos40°C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案