20.如圖所示,PQ為⊙O的切線,切點(diǎn)為Q,割線PEF過圓心O,且QM=QN.
(Ⅰ)求證:PF•QN=PQ•NF;
(Ⅱ)若QP=QF=$\sqrt{3}$,求PF的長.

分析 (I)已知條件PQ為圓O的切線,聯(lián)系切線的性質(zhì)、弦切角定理,利用三角形相似,可得結(jié)論;
(II)求出∠PQF=120°,利用余弦定理求PF的長.

解答 (I)證明:因?yàn)镻Q為圓O的切線,所以∠PFQ=∠PQE.…(1分)
又因?yàn)镼M=QN,所以∠QNM=∠QMN,…(2分)
所以∠PNF=∠PMQ,…(3分)
所以△PNF∽△PMQ,…(4分)
所以$\frac{PF}{PQ}=\frac{NF}{MQ}=\frac{NF}{NQ}$,即PF•QN=PQ•NF;…(5分)
(II)解:因?yàn)镼P=QF=$\sqrt{3}$,所以∠PFQ=∠QPF.…(6分)
又∠PFQ+∠QPF+∠PQE+∠EQF=180°,∠EQF=90°,…(7分)
所以∠PFQ=∠QPF=30°,∠PQF=120°,…(8分)
由余弦定理,得PF=$\sqrt{3+3-2•\sqrt{3}•\sqrt{3}•(-\frac{1}{2})}$=3.…(10分)

點(diǎn)評 本題考查圓周角定理、弦切角定理、余弦定理、圓的性質(zhì),以及考查邏輯四維能力、推理理論能力、轉(zhuǎn)化能力、運(yùn)算求解能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=lnx+$\frac{x+1}({b>0})$,對任意x1,x2∈[1,2],x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<-1,則實(shí)數(shù)b的取值范圍是$({\frac{27}{2},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前項(xiàng)和為Sn,Sn=1+tan(t≠1且t≠0,n∈N*)
(1)求證:數(shù)列{an}是等比數(shù)列
(2)若$\lim_{n→∞}$Sn=1,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知曲線f(x)=xsinx+1在點(diǎn)(${\frac{π}{2}$,${\frac{π}{2}$+1)處的切線與直線ax-y+1=0互相垂直,則實(shí)數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.經(jīng)過點(diǎn)(1,3)且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程是y=3x或y=x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)命題p:函數(shù)y=loga-1[(a-3)x-1]在其定義域上為增函數(shù),命題q:函數(shù)y=ln[(3a-4)x2-2ax+2]的定義域?yàn)镽.
(1)若命題“p∨q”為真命題,求實(shí)數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,且“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}、{bn}滿足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{b_n}{1-a_n^2}$.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若cn=$\frac{{{a_n}-a_n^2}}{{{2^n}({1-2{a_n}})({1-3{a_n}})}}$,求證:數(shù)列{cn}的前n項(xiàng)和Sn≥$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其函數(shù)對應(yīng)關(guān)系如表:
x123
f(x)231
x123
g(x)321
則方程g(f(3))=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,在棱長為2的正方體中,直線AC1和B1C的夾角是90°  

查看答案和解析>>

同步練習(xí)冊答案