分析 由已知推導出2a1-d=k(4a1-2d),且d=4kd,從而得到k=$\frac{1}{2}$或d=2a1.d=0 或k=$\frac{1}{4}$.由此能求出k.
解答 解:∵{an}是首項不為零的等差數(shù)列,$\frac{{S}_{n}}{{S}_{2n}}$是與n無關的常數(shù)k,
∴Sn=na1+$\frac{1}{2}$n(n-1)d,
S2n=2na1+$\frac{1}{2}$•2n(2n-1)d,
∴$\frac{{S}_{n}}{{S}_{2n}}$=$\frac{2{a}_{1}+(n-1)d}{4{a}_{1}+(4n-2)d}$=k,
則2a1+(n-1)d=k•[4a1+(4n-2)d]對于任意的n恒成立.
(2a1-d)+nd=k(4a1-2d)+4kdn,
故:2a1-d=k(4a1-2d),(1)
且d=4kd,(2)
由(1)得:k=$\frac{1}{2}$或d=2a1.
當d=2a1時.Sn=n2•a1,S2n=4n2•a1,$\frac{{S}_{n}}{{S}_{2n}}$=$\frac{1}{4}$成立.
由(2)得:d=0 或k=$\frac{1}{4}$,
當d=0時,Sn=na1,S2n=2na1,$\frac{{S}_{n}}{{S}_{2n}}$n=$\frac{1}{2}$,
當d≠0時,k=$\frac{1}{4}$,代入(1)得:d=2a1,
此時:Sn=n2•a1,S2n=4n2•a1,$\frac{{S}_{n}}{{S}_{2n}}$=$\frac{1}{4}$成立.
綜上可知:k=$\frac{1}{2}$或k=$\frac{1}{4}$.
故答案為:$\frac{1}{2}$或$\frac{1}{4}$.
點評 本題考查實數(shù)值的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $2\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com