規(guī)定其中,為正整數(shù),且=1,這是排列數(shù)(是正整數(shù),)的一種推廣.
(Ⅰ) 求的值;
(Ⅱ)排列數(shù)的兩個(gè)性質(zhì):①,②(其中m,n是正整數(shù)).是否都能推廣到(,是正整數(shù))的情形?若能推廣,寫(xiě)出推廣的形式并給予證明;若不能,則說(shuō)明理由;
(Ⅲ)已知函數(shù),試討論函數(shù)的零點(diǎn)個(gè)數(shù).
(1)-990
(2)①,②()
(3)當(dāng)時(shí),函數(shù)不存在零點(diǎn),
當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),
當(dāng)時(shí),即函數(shù)有且只有兩個(gè)零點(diǎn).

試題分析:解:(Ⅰ)
(Ⅱ)性質(zhì)①、②均可推廣,推廣的形式分別是①,②()
證明:①當(dāng)時(shí),左邊,右邊,等式成立;
當(dāng)時(shí),左邊

因此,()成立.
②當(dāng)時(shí),左邊右邊,等式成立;
當(dāng)時(shí),左邊



=右邊
因此,()成立.
(Ⅲ)
設(shè)函數(shù),
則函數(shù)零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)公共點(diǎn)的個(gè)數(shù).
的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824015847179535.png" style="vertical-align:middle;" />

,得





-
0
+




∴當(dāng)時(shí),函數(shù)沒(méi)有公共點(diǎn),即函數(shù)不存在零點(diǎn),
當(dāng)時(shí),函數(shù)有一個(gè)公共點(diǎn),即函數(shù)有且只有一個(gè)零點(diǎn),
當(dāng)時(shí),函數(shù)有兩個(gè)公共點(diǎn),即函數(shù)有且只有兩個(gè)零點(diǎn).
點(diǎn)評(píng):主要是考查了函數(shù)零點(diǎn)的求解以及組合數(shù)和排列數(shù)公式的運(yùn)用,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)a=1時(shí),求曲線在點(diǎn)(3,)處的切線方程
(2)求函數(shù)的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),,且函數(shù)在點(diǎn)處的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)點(diǎn),當(dāng)時(shí),直線的斜率恒小于,試求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),(1)若,求函數(shù)的極值;
(2)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使線段的中點(diǎn)的橫坐標(biāo)與直線的斜率之間滿足?若存在,求出;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的圖像都過(guò)點(diǎn),且它們?cè)邳c(diǎn)處有公共切線.
(1)求函數(shù)的表達(dá)式及在點(diǎn)處的公切線方程;
(2)設(shè),其中,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)上可導(dǎo),,則 ______;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)設(shè),求的單調(diào)區(qū)間;
(Ⅱ) 設(shè),且對(duì)于任意,.試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)(其中).
(Ⅰ) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時(shí),求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù)
(1)若,證明
(2)若不等式時(shí)都恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案