在△ABC中,已知3b=2
3
asinB,且cosB=cosC,角A是銳角,則△ABC的形狀是( 。
A、直角三角形
B、等腰三角形
C、等腰直角三角形
D、等邊三角形
考點:正弦定理
專題:解三角形
分析:由cosB=cosC和內(nèi)角的范圍得B=C,由正弦定理化簡3b=2
3
asin B,由A是銳角求出A,可判斷出△ABC的形狀.
解答: 解:因為cosB=cosC,且B、C∈(0,π),
所以B=C,則△ABC是等腰三角形,
因為3b=2
3
asinB,則由正弦定理得3sinB=2
3
sinAsinB,
所以sinA=
3
2

又角A是銳角,則A=
π
3
,所以△ABC是等邊三角形,
故選:D.
點評:本題考查正弦定理的應(yīng)用:邊角互化,注意三角形內(nèi)角的范圍,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面正六邊形ABCDEF中,不能和
AB
組成平面向量基底的是( 。
A、
AB
+
BC
B、
AB
-
AF
C、
DE
D、2
CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某招聘口試中,要從5道題中隨機抽出3道進行回答,答對其中的2道題就獲得優(yōu)秀,答對其中的1道題就獲得及格.若某應(yīng)聘者只會回答5道題中的2道,則他獲得及格或優(yōu)秀的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知國家某5A級大型景區(qū)對每日游客數(shù)量擁擠等級規(guī)定如下表:
游客數(shù)量(百人)[0,100)[100,200)[200,300)≥300
擁擠等級優(yōu)擁擠嚴重擁擠
該景區(qū)對6月份的游客量作出如圖的統(tǒng)計數(shù)據(jù):

(I)下面是根據(jù)統(tǒng)計數(shù)據(jù)得到的頻率分布表,求a,b的值;
游客數(shù)量(百人)[0,100)[100,200)[200,300)[300,400]
天數(shù)a1041
頻率b
1
3
2
15
1
30
(Ⅱ)估計該景區(qū)6月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)某人選擇在6月1日至6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為優(yōu)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若三條直線l1:4x+y+4=0,l2:mx+y+1=0,l3:x-y+1=0不能圍成三角形,則m的取值為( 。
A、4或-1B、1或-1
C、-1或4D、-1,1,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P是線段P1P2上的一點,P1,P2的坐標分別是(x1,y1),(x2,y2),當(dāng)
P1P
PP2
時,點P的坐標是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,點E,F(xiàn)分別在棱BB1,CC1上,且C1F=
1
3
C1C,BE=λBB1,0<λ<1.
(1)當(dāng)λ=
1
3
時,求異面直線AE與A1F所成角的大小;
(2)當(dāng)直線AA1與平面AEF所成角的正弦值為
2
29
29
時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若a3=2,a5=8,則S7等于( 。
A、16B、18C、35D、22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)為奇函數(shù)的是( 。
A、x2+2x
B、2cosx+1
C、x3sinx
D、2x-
1
2x

查看答案和解析>>

同步練習(xí)冊答案