在某招聘口試中,要從5道題中隨機(jī)抽出3道進(jìn)行回答,答對(duì)其中的2道題就獲得優(yōu)秀,答對(duì)其中的1道題就獲得及格.若某應(yīng)聘者只會(huì)回答5道題中的2道,則他獲得及格或優(yōu)秀的概率是
 
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專(zhuān)題:概率與統(tǒng)計(jì)
分析:根據(jù)等可能事件的概率,先求出他不及格的概率,在利用對(duì)立事件的概率公式即可求出
解答: 解:從5道題中隨機(jī)抽出3道題進(jìn)行回答的抽法有C53=10種,他不及格的抽法有C33=1種,
則他不及格的概率為
1
10
,
則他獲得及格他獲得及格或優(yōu)秀的概率等于1減去他不及格的概率,即P=1-
1
10
=
9
10
,
故答案為:
9
10
點(diǎn)評(píng):本題考查n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率,等可能事件的概率,所求的事件與它的對(duì)立事件概率間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求過(guò)原點(diǎn)作曲線C:y=x3-3x2+2x-1的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入x=4,則輸出y的值為(  )
A、1
B、-
1
2
C、-
13
8
D、-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x-k2+k+2(k∈z)滿足f(2)<f(3).
①求k及f(x);
②判斷是否存在q>0使g(x)=1-qf(x)+(2q-1)x在[-1,2]上的值域?yàn)閇-4,
17
8
],若存在求出q;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象過(guò)點(diǎn)P(
π
3
,0)且圖象上與P點(diǎn)最近的一個(gè)最高點(diǎn)坐標(biāo)為(
π
12
,5).
(1)求函數(shù)的解析式;
(2)指出函數(shù)的減區(qū)間;
(3)當(dāng)x∈[-
π
6
, 
π
3
]
時(shí),求該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=lg
1+x
1-x
的定義域?yàn)榧螦,集合B=(a,a+1),若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin2ωx+2
3
cos2ωx-
3
(x∈R),ω>0,函數(shù)f(x)的最小正周期為π.
(1)求f(x)的解析式;
(2)已知g(x)的圖象和f(x)的圖象關(guān)于點(diǎn)M(
3
,0)對(duì)稱(chēng),求g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知3b=2
3
asinB,且cosB=cosC,角A是銳角,則△ABC的形狀是( 。
A、直角三角形
B、等腰三角形
C、等腰直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2,則f(3.5)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案