【題目】已知四邊形是正方形,平面平面,,為棱的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的正切值.

【答案】1)證明見解析;(2

【解析】

1)連接、,推出為等腰三角形,,,從而四邊形為平行四邊形,進(jìn)而,推導(dǎo)出,,由此能證明平面

2)取的中點(diǎn),連接,的中位線,,由平面,由此平面,從而斜線在平面內(nèi)的射影為,直線與平面所成角為,能求出直線與平面所成角的正切值.

解:如圖所示:連接、

1)證明:四邊形是正方形,且

為等腰三角形

為棱的中點(diǎn),得:

平面平面,得:

,則四邊形為平行四邊形

又正方形,

為等腰三角形

,平面,平面

平面

2)取的中點(diǎn),連接、

點(diǎn)分別為、的中點(diǎn)

的中位線

平面

平面

為斜線過點(diǎn)向平面的一條垂線,垂足為點(diǎn),則斜線在平面內(nèi)的射影為,直線與平面所成角為,設(shè)

由幾何關(guān)系可得:

中得:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上的兩個動點(diǎn),且滿足.設(shè)線段的中點(diǎn)上的投影為,則的最大值是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個極值點(diǎn)

(1)求的取值范圍;

(2)求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓上一點(diǎn),分別為關(guān)于軸,原點(diǎn),軸的對稱點(diǎn),

1)求四邊形面積的最大值;

2)當(dāng)四邊形最大時,在線段上任取一點(diǎn),若過的直線與橢圓相交于兩點(diǎn),且中點(diǎn)恰為,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C=2px經(jīng)過點(diǎn)(1,2).過點(diǎn)Q(0,1)的直線l與拋物線C有兩個不同的交點(diǎn)A,B且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍

設(shè)O為原點(diǎn),,求證為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C1的漸近線是x±2y=0,焦點(diǎn)坐標(biāo)是F1-,0)、F2,0).

1)求雙曲線C1的方程;

2)若橢圓C2與雙曲線C1有公共的焦點(diǎn),且它們的離心率之和為,點(diǎn)P在橢圓C2上,且|PF1|=4,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求與直線3x4y70垂直,且與原點(diǎn)的距離為6的直線方程;

(2)求經(jīng)過直線l12x3y50l27x15y10的交點(diǎn),且平行于直線x2y30的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是亞太區(qū)域國家與地區(qū)加強(qiáng)多邊經(jīng)濟(jì)聯(lián)系、交流與合作的重要組織,其宗旨和目標(biāo)是“相互依存、共同利益,堅持開放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會議于11月10日至11日在越南峴港舉行.某研究機(jī)構(gòu)為了了解各年齡層對會議的關(guān)注程度,隨機(jī)選取了100名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人參與會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個內(nèi)角所對的邊分別是,若.

1)求角;

2)若的外接圓半徑為2,求周長的最大值.

【答案】(1) ;(2) .

【解析】試題分析:(1由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2先根據(jù)正弦定理求邊,用角表示周長,根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.

試題解析:1)由正弦定理得,

,∴,即

因?yàn)?/span>,則.

(2)由正弦定理

, ,

∴周長

∴當(dāng)

∴當(dāng), 周長的最大值為.

型】解答
結(jié)束】
18

【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

其中: ,

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)

(3)若規(guī)定,一個人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?

查看答案和解析>>

同步練習(xí)冊答案