分析 (1)由AB為圓的直徑,利用圓周角定理得到∠APB為直角,再由AB=1,表示出PA與PB,根據(jù)PT與圓相切,表示出BC,進(jìn)而表示出四邊形ABTP的面積,整理后,利用正弦函數(shù)的值域及二次函數(shù)性質(zhì)確定出最大值即可;
(2)把表示出的PA,PB,PC代入所求式子,設(shè)t=cosα+sinα,可得出t2=1+2cosαsinα,進(jìn)而表示出cosαsinα,代入所求式子整理為一個(gè)角的正弦函數(shù),利用正弦函數(shù)的值域及二次函數(shù)性質(zhì)確定出范圍即可.
解答 解:(1)∵AB為直徑,
∴∠APB=90°,AB=1,
∵∠PAB=α,
∴PA=cosα,PB=sinα,
又PT切圓于P點(diǎn),∠TPB=∠PAB=α,
∴BC=sinα•PB=sin2α,
∴S四邊形ABTP=S△PAB+S△TPB
=$\frac{1}{2}$PA•PB+$\frac{1}{2}$PT•BC
=$\frac{1}{2}$sinαcosα+$\frac{1}{2}$sin2α
=$\frac{1}{4}$sin2α+$\frac{1}{4}$(1-cos2α)
=$\frac{1}{4}$(sin2α-cos2α)+$\frac{1}{4}$
=$\frac{\sqrt{2}}{4}$sin(2α-$\frac{π}{4}$)+$\frac{1}{4}$,
∵0<α<$\frac{π}{2}$,-$\frac{π}{4}$<2α-$\frac{π}{4}$<$\frac{3}{4}$π,
∴當(dāng)2α-$\frac{π}{4}$=$\frac{π}{2}$,即α=$\frac{3}{8}$π時(shí),S四邊形ABTP最大;
(2)|PA|+|PB|+|PC|=cosα+sinα+sinαcosα,
設(shè)t=cosα+sinα,則t2=cos2α+sin2α+2cosαsinα=1+2cosαsinα,
∴cosαsinα=$\frac{{t}^{2}-1}{2}$,
∴|PA|+|PB|+|PC|=$\frac{{t}^{2}-1}{2}$+t=$\frac{{t}^{2}}{2}$+t-$\frac{1}{2}$,
∵t=cosα+sinα=$\sqrt{2}$sin(α+$\frac{π}{4}$)∈(1,$\sqrt{2}$],且t=-1∉(1,$\sqrt{2}$],
∴|PA|+|PB|+|PC|=$\frac{{t}^{2}}{2}$+t-$\frac{1}{2}$在t∈(1,$\sqrt{2}$]時(shí)單調(diào)遞增,
則(|PA|+|PB|+|PC|)∈(1,$\frac{1}{2}$+$\sqrt{2}$].
點(diǎn)評 此題考查了與圓有關(guān)的比例線段,正弦函數(shù)的定義域與值域,兩角和與差的正弦函數(shù)公式,以及二次函數(shù)性質(zhì),熟練掌握三角函數(shù)的恒等變換是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 48+24π | B. | 39+24π | C. | 39+36π | D. | 48+30π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2f(x)≥0 | B. | x2f(x)≤0 | C. | x2[f(x)-1]≥0 | D. | x2[f(x)-1]≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com