【題目】對(duì)以下命題:

①隨機(jī)事件的概率與頻率一樣,與試驗(yàn)重復(fù)的次數(shù)有關(guān);

②拋擲兩枚均勻硬幣一次,出現(xiàn)一正一反的概率是;

③若一種彩票買一張中獎(jiǎng)的概率是,則買這種彩票一千張就會(huì)中獎(jiǎng);

姚明投籃一次,求投中的概率屬于古典概型概率問題.

其中正確的個(gè)數(shù)是(

A.0B.1C.2D.3

【答案】A

【解析】

概率與試驗(yàn)重復(fù)的次數(shù)無關(guān),拋擲兩枚均勻硬幣一次,出現(xiàn)一正一反的概率是,若一種彩票買一張中獎(jiǎng)的概率是,則買這種彩票一千張仍然不一定中獎(jiǎng),姚明投籃的結(jié)果中與不中概率不相等.

隨機(jī)事件的概率與頻率不一樣,與試驗(yàn)重復(fù)的次數(shù)無關(guān),所以①錯(cuò)誤;

拋擲兩枚均勻硬幣一次,可能的結(jié)果:正正,正反,反正,反反,所以出現(xiàn)一正一反的概率是,所以②錯(cuò)誤;

若一種彩票買一張中獎(jiǎng)的概率是,這是隨機(jī)事件,則買這種彩票一千張不一定會(huì)中獎(jiǎng),所以③錯(cuò)誤;

“姚明投籃一次,求投中的概率”, 姚明投籃的結(jié)果中與不中概率不相等,不屬于古典概型概率問題,所以④錯(cuò)誤.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線的極坐標(biāo)方程為).

(1)寫出直線的直角坐標(biāo)方程與曲線的普通方程;

(2)平移直線使其經(jīng)過曲線的焦點(diǎn),求平移后的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著生活水平的提高,人們的休閑方式也發(fā)生了變化.某機(jī)構(gòu)隨機(jī)調(diào)查了個(gè)人,其中男性占調(diào)查人數(shù)的.已知男性中有一半的人的休閑方式是運(yùn)動(dòng),而女性只有人的休閑方式是運(yùn)動(dòng).

(1)完成下列列聯(lián)表:

運(yùn)動(dòng)

非運(yùn)動(dòng)

總計(jì)

男性

女性

總計(jì)

n

(2)若在犯錯(cuò)誤的概率不超過的前提下,可認(rèn)為“性別與休閑方式有關(guān)”, 那么本次被調(diào)查的人數(shù)至少有多少?

(3)根據(jù)(2)的結(jié)論,本次被調(diào)查的人中,至少有多少人的休閑方式是運(yùn)動(dòng)?

參考公式,其中

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司代理銷售某種品牌小商品,該產(chǎn)品進(jìn)價(jià)為5元/件,銷售時(shí)還需交納品牌使用費(fèi)3元/件,售價(jià)為元/件,其中,且.根據(jù)市場(chǎng)調(diào)查,當(dāng),且時(shí),每月的銷售量(萬件)與成正比;當(dāng),且時(shí),每月的銷售量(萬件)與成反比.已知售價(jià)為15元/件時(shí),月銷售量為9萬件.

(1)求該公司的月利潤(rùn)(萬件)與每件產(chǎn)品的售價(jià)(元)的函數(shù)關(guān)系式;

(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該公司的月利潤(rùn)最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南通風(fēng)箏是江蘇傳統(tǒng)手工藝品之一.現(xiàn)用一張長(zhǎng)2 m,寬1.5 m的長(zhǎng)方形牛皮紙ABCD裁剪風(fēng)箏面,裁剪方法如下:分別在邊AB,AD上取點(diǎn)E,F,將三角形AEF沿直線EF翻折到處,點(diǎn)落在牛皮紙上,沿裁剪并展開,得到風(fēng)箏面,如圖1.

(1)若點(diǎn)E恰好與點(diǎn)B重合,且點(diǎn)BD上,如圖2,求風(fēng)箏面的面積;

(2)當(dāng)風(fēng)箏面的面積為時(shí),求點(diǎn)AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個(gè)零件為樣本,測(cè)量其直徑后,整理得到下表:

直徑/mm

58

59

61

62

63

64

65

件數(shù)

1

1

3

5

6

19

33

直徑/mm

66

67

68

69

70

71

73

合計(jì)

件數(shù)

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

(I)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):①;②;③.判定規(guī)則為:若同時(shí)滿足上述三個(gè)式子,則設(shè)備等級(jí)為甲;若僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部都不滿足,則等級(jí)為丁.試判斷設(shè)備的性能等級(jí).

(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”,將直徑尺寸在之外的零件認(rèn)定為“突變品”.從樣本的“次品”中隨意抽取兩件,求至少有一件“突變品”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以,,,為頂點(diǎn)的五面體中,平面平面,是邊長(zhǎng)為的正三角形,直線與平面所成角為.

(I)求證:;

(Ⅱ)若,四邊形為平行四邊形,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,利用斜二側(cè)畫法得到水平放置的的直觀圖,其中軸,軸.若,設(shè)的面積為,的面積為,記,執(zhí)行如圖②的框圖,則輸出的值

A. 12B. 10C. 9D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,四邊形為矩形,,.

(1)求證:平面;

(2)設(shè),求平面與平面所成的二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案