1.已知偶函數(shù)f(x)在區(qū)間[0,+∞)內(nèi)單調(diào)遞減,f(2)=0.若f(x-1)>0,則x的取值范圍是( 。
A.(-2,2)B.(-1,2)C.(2,+∞)D.(-1,3)

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進行轉(zhuǎn)化進行求解即可.

解答 解:∵偶函數(shù)f(x)在區(qū)間[0,+∞)內(nèi)單調(diào)遞減,f(2)=0,
∴若f(x-1)>0,則等價為f(|x-1|)>f(2),
即|x-1|<2,得-2<x-1<2,
即-1<x<3,
即不等式的解集為(-1,3),
故選:D

點評 本題主要考查不等式的求解,根據(jù)奇偶性和單調(diào)性的關(guān)系將不等式轉(zhuǎn)化為f(|x-1|)>f(2)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把函數(shù)f(x)=cos(2x+φ)的圖象向左平移$\frac{π}{6}$個單位后,所得圖象關(guān)于y軸對稱,則φ可以為( 。
A.$-\frac{π}{6}$B.$-\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.平面直角坐標系中,直線x-2y+3=0的一個方向向量是( 。
A.(1,2)B.(2,1)C.(1,-2)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為考察某藥物預(yù)防疾病的效果,用小白鼠進行動物試驗,得到如表的列聯(lián)表:
患病未患病總計
服用藥213051
沒服用藥82634
總計295685
(Ⅰ)根據(jù)上表數(shù)據(jù),能否以90%的把握認為藥物有效?
(Ⅱ)用分層抽樣方法從“服用藥”和“沒服用藥”兩類小白鼠中隨機抽取一個容量為5的樣本,再從該樣本中任取2只,求其中恰有1只小白鼠服用藥物的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)是偶函數(shù),且f(x+$\frac{1}{2}$)=f($\frac{1}{2}$-x),當-$\frac{1}{2}$≤x≤0時,f(x)=($\frac{1}{2}$)x-1,記an=f($\frac{n+1}{2}$),n∈N+,則a2046的值為( 。
A.1-$\sqrt{2}$B.1-$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$-1D.$\frac{\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$),f(0)=-$\frac{{\sqrt{3}}}{2}$,且函數(shù)f(x)圖象上的任意兩條對稱軸之間距離的最小值是$\frac{π}{2}$.
(I)求函數(shù)f(x)的解析式;
(II)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos(α+$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知在等腰梯形ABCD中,AB∥DC,AB=BC=2,∠ABC=120°,E為BC的中點,則$\overrightarrow{AC}$•$\overrightarrow{DE}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.從某高中隨機選取5名高三男生,其身高和體重的數(shù)據(jù)如表所示:
身高x(cm)160165170175180
體重y(kg)6569m7274
根據(jù)上表得到的回歸直線方程為$\hat y$=0.5x-15,則m的值為70.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知以下三視圖中有三個同時表示某一個三棱錐,則不是該三棱錐的三視圖是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案