18.設(shè)直線x-3y+t=0(t≠0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線分別交于點(diǎn)A,B.若點(diǎn)M(t,0)滿足|MA|=|MB|,則雙曲線的漸近線方程為(  )
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}$xD.y=±$\frac{1}{4}$x

分析 先求出雙曲線的漸近線方程,聯(lián)立直線x-3y+t=0,求得A,B的坐標(biāo),可得AB中點(diǎn)坐標(biāo),利用點(diǎn)M(t,0)滿足|MA|=|MB|,可得$\frac{\frac{3t^{2}}{9^{2}-{a}^{2}}-0}{\frac{t{a}^{2}}{9^{2}-{a}^{2}}-t}$=-3,化簡整理可得a=2b,從而可求雙曲線的漸近線方程.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線方程為y=±$\frac{a}$x,
與直線x-3y+t=0聯(lián)立,
可得A($\frac{ta}{3b-a}$,$\frac{tb}{3b-a}$),B(-$\frac{ta}{3b+a}$,$\frac{tb}{3b+a}$),
∴AB中點(diǎn)坐標(biāo)為($\frac{t{a}^{2}}{9^{2}-{a}^{2}}$,$\frac{3t^{2}}{9^{2}-{a}^{2}}$),
∵點(diǎn)M(t,0)滿足|MA|=|MB|,
∴$\frac{\frac{3t^{2}}{9^{2}-{a}^{2}}-0}{\frac{t{a}^{2}}{9^{2}-{a}^{2}}-t}$=-3,
∴a=2b,
∴雙曲線的漸近線方程為y=±$\frac{1}{2}$x.
故選:C.

點(diǎn)評 本題考查雙曲線的漸近線方程的求法,注意運(yùn)用聯(lián)立直線方程求交點(diǎn),運(yùn)用中點(diǎn)坐標(biāo)公式,以及兩直線垂直的條件:斜率之積為-1,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的離心率為$\sqrt{5}$,虛軸長為4.
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)(0,1),傾斜角為45°的直線l與雙曲線C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)雙曲線$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{9}$=λ的一條漸近線方程為x+2y=0,則a的值為(  )
A.6B.-6C.36D.-36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線均與圓(x-2)2+y2=1相切,則雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有公共焦點(diǎn),且離心率$e=\frac{5}{3}$的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow{AM}=-3\overrightarrow{MB}$,O為平面內(nèi)任意一點(diǎn),則下列各式成立的是( 。
A.$\overrightarrow{OM}=-\frac{1}{2}\overrightarrow{OA}+\frac{3}{2}\overrightarrow{OB}$B.$\overrightarrow{OM}=-\overrightarrow{OA}+2\overrightarrow{OB}$C.$\overrightarrow{OM}=2\overrightarrow{OA}-\overrightarrow{OB}$D.$\overrightarrow{OM}=\frac{3}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$x=\frac{π}{4}$是函數(shù)f(x)=asinx+cosx的一條對稱軸,若將函數(shù)f(x)的圖象向右平移φ(φ>0)個單位所得圖象關(guān)于y軸對稱,則φ的最小值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)$y={(\frac{1}{5})^{x+1}}+m$的圖象不過第一象限,則實(shí)數(shù)m的取值范圍是(-∞,-$\frac{1}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,角A,B,C對應(yīng)的邊分別為a,b,c.若a2=(b+c)2-bc,則A$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案