A. | -1 | B. | 2 | C. | 2或-1 | D. | 0或2或-1 |
分析 根據(jù)冪函數(shù)的系數(shù)一定為1可先確定參數(shù)m的值,再根據(jù)單調(diào)性進(jìn)行排除,可得答案.
解答 解:∵f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-1}$是冪函數(shù),
∴可得m2-m-1=1,解得m=-1或2.
當(dāng)m=-1時,函數(shù)為y=x2在區(qū)間(0,+∞)上單調(diào)遞增,滿足題意,
當(dāng)m=2時,函數(shù)為y=x-1在(0,+∞)上不是遞增,不滿足條件.
故選:A.
點(diǎn)評 本題主要考查冪函數(shù)的表達(dá)形式以及冪函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{6}$,橫坐標(biāo)縮短為原來的$\frac{1}{2}$ | |
B. | 向右平移$\frac{π}{6}$,橫坐標(biāo)伸長為原來的2倍 | |
C. | 向右平移$\frac{π}{3}$,橫坐標(biāo)縮短為原來的$\frac{1}{2}$ | |
D. | 向右平移$\frac{π}{3}$,橫坐標(biāo)伸長為原來的2倍 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -$\frac{7}{25}$ | D. | -1或-$\frac{7}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com