16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a>c,已知$\overrightarrow{BA}•\overrightarrow{BC}$=-3,cosB=-$\frac{3}{7}$,b=2$\sqrt{14}$,求:
(1)a和c的值;
(2)sin(A-B)的值.

分析 (1)由平面向量的數(shù)量積和余弦定理,列出方程組解方程組即可;
(2)根據(jù)三角恒等變換和由正弦定理,計算sin(A-B)的值即可.

解答 解:(1)△ABC中,由$\overrightarrow{BA}•\overrightarrow{BC}$=-3得ca•cosB=-3,
又cosB=-$\frac{3}{7}$,所以ac=7;
由余弦定理得b2=a2+c2-2ac•cosB,
又b=2$\sqrt{14}$,所以a2+c2=50;
解方程組$\left\{\begin{array}{l}{ac=7}\\{{a}^{2}{+c}^{2}=50}\end{array}\right.$,
因為a>c,
所以解得a=7,c=1;
(2)△ABC中,sinB=$\sqrt{1{-cos}^{2}B}$=$\frac{2\sqrt{10}}{7}$,
由正弦定理,得sinA=$\frac{a}$sinB=$\frac{\sqrt{35}}{7}$,
因為cosB<0,所以A為銳角,
所以cosA=$\sqrt{1{-sin}^{2}A}$=$\frac{\sqrt{14}}{7}$;
所以sin(A-B)=sinAcosB-cosAsinB=-$\frac{\sqrt{35}}{7}$.

點評 本題考查了三角恒等變換和正弦、余弦定理的應用問題,也考查了平面向量的數(shù)量積問題,是綜合性題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.計算sin5°cos55°+cos5°sin55°的結果是( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設f(x)=$\frac{1}{{{3^x}+\sqrt{3}}}$,求:f(0)+f(1);f(-1)+f(2);f(-2)+f(3),由此可以猜想出的一般性結論是若${x_1}+{x_2}=1,則f({x_1})+f({x_2})=\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+t}\\{y=1+\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以原點為極點,以x軸為正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$.
(1)求曲線C1與曲線C2的直角坐標方程;
(2)設點M($\sqrt{3}$,1),曲線C1與曲線C2交于A,B兩點,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.用火柴棒擺“三角形”,如圖所示:按照規(guī)律,第5個“三角形”中需要火柴棒的根數(shù)是( 。
A.18B.19C.24D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知f(x)=alnx+$\frac{1}{2}$x2(a>0),若對任意兩個不等的正實數(shù)x1,x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$≥2恒成立,則a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C的坐標方程為ρ=2cosθ,直線l經(jīng)過點M(5,$\sqrt{3}$),且傾斜角為$\frac{π}{6}$.
(1)求曲線C的直角坐標方程與直線l的參數(shù)方程;
(2)設直線l與曲線C交于A,B兩點,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k)若α∥β,則k等于( 。
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某冷飲店為了解氣溫對其營業(yè)額的影響,隨機記錄了該店1月份銷售淡季中的日營業(yè)額y(單位:百元)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如表所示:
x367910
y1210887
(Ⅰ)判定y與x的是正相關還是負相關;并求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)若該地1月份某天的最低氣溫為0℃,預測該店當日的營業(yè)額
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

同步練習冊答案