6.計(jì)算sin5°cos55°+cos5°sin55°的結(jié)果是( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 利用兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值化簡(jiǎn)已知即可得解.

解答 解:sin5°cos55°+cos5°sin55°
=sin(5°+55°)
=sin60°
=$\frac{\sqrt{3}}{2}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=x3B.y=ln|x|C.y=sin($\frac{π}{2}$-x)D.y=-x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為$\frac{π}{2}$.
(1)求f($\frac{π}{4}$-α)=$\frac{3\sqrt{7}}{4}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求sinα的值;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[-π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.有以下程序:
  
根據(jù)以上程序,若函數(shù)g(x)=f(x)-m在R上有且只有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,若m⊥α,n⊥β,且β⊥α,則下列結(jié)論一定正確的是( 。
A.m⊥nB.m∥nC.m與n相交D.m與n異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.王師傅為響應(yīng)國(guó)家開(kāi)展全民健身運(yùn)動(dòng)的號(hào)召,每天堅(jiān)持“健步走”,并用計(jì)步器對(duì)每天的“健步走”步數(shù)進(jìn)行統(tǒng)計(jì),他從某個(gè)月中隨機(jī)抽取10天“健步走”的步數(shù),繪制出的頻率分布直方圖如圖所示.
(1)試估計(jì)該月王師傅每天“健步走”的步數(shù)的中位數(shù)及平均數(shù)(精確到小數(shù)點(diǎn)后1位);
(2)某健康組織對(duì)“健步走”結(jié)果的評(píng)價(jià)標(biāo)準(zhǔn)為:
每天的步數(shù)分組
(千步)
[8,10)[10,12)[12,14]
評(píng)價(jià)級(jí)別及格良好優(yōu)秀
現(xiàn)從這10天中評(píng)價(jià)級(jí)別是“良好”或“及格”的天數(shù)里隨機(jī)抽取2天,求這2天的“健步走”結(jié)果屬于同一評(píng)價(jià)級(jí)別的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個(gè)數(shù)且兩端的數(shù)均為$\frac{1}{n}$(n≥2),每個(gè)數(shù)是它下一行左右相鄰兩數(shù)之和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,則第n(n≥4)行倒數(shù)第四個(gè)數(shù)(從右往左數(shù))為$\frac{1}{{n•C_{n-1}^3}}$或$\frac{6}{n(n-1)(n-2)(n-3)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.?dāng)?shù)列{an}的前n項(xiàng)和是Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)則排列:$\frac{1}{2},\frac{1}{3},\frac{2}{3},\frac{1}{4},\frac{2}{4},\frac{3}{4},\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5},…,\frac{1}{n},\frac{2}{n},…,\frac{n-1}{n}$,…若存在正整數(shù)k,使Sk<100,Sk+1≥100,則ak=$\frac{14}{21}$,k=203.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a>c,已知$\overrightarrow{BA}•\overrightarrow{BC}$=-3,cosB=-$\frac{3}{7}$,b=2$\sqrt{14}$,求:
(1)a和c的值;
(2)sin(A-B)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案