4.已知圓(x-1)2+y2=R2(R>0)與橢圓$\frac{{x}^{2}}{4}$+y2=1有公共點(diǎn),求圓的半徑R的最小值.

分析 將圓方程和橢圓方程消去y,可得x的二次方程,結(jié)合圖形,當(dāng)圓包含在橢圓內(nèi),且與橢圓相切時(shí),半徑取得最。藭r(shí)判別式為0,解方程可得圓的半徑的最小值.

解答 解:橢圓$\frac{{x}^{2}}{4}$+y2=1與圓(x-1)2+y2=R2有公共點(diǎn),
將圓的方程和橢圓方程相減得:
(x-1)2-$\frac{{x}^{2}}{4}$=R2-1,
即有4x2-8x+4-x2+4=4R2,
即3x2-8x+8-4R2=0,
當(dāng)圓包含在橢圓內(nèi),且與橢圓相切時(shí),半徑取得最。
可得△=64-48(2-R2)=0,
即有R2=$\frac{2}{3}$,解得R=$\frac{\sqrt{6}}{3}$.
則R的最小值為$\frac{\sqrt{6}}{3}$.

點(diǎn)評(píng) 本題考查圓與橢圓有公共點(diǎn)的條件,注意聯(lián)立方程消去一個(gè)未知數(shù),運(yùn)用數(shù)形結(jié)合的思想方法,可得判別式等于0,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)既不是偶函數(shù)也不是奇函數(shù)的是( 。
A.f(x)=ex+e-xB.f(x)=ex-e-xC.f(x)=x|x|D.f(x)=cos(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ex-mx-n.
(1)求函數(shù)f(x)在[0,1]上的最小值;
(2)若方程f(x)=$\frac{1}{2}$mx2+(n-m)x-n+1的一個(gè)解為1,且該方程還在(0,1)上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=$\sqrt{3}$sin2x-2cos2x(x∈R)的最小正周期是( 。
A.πB.2 πC.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{2^n}{3}$,則$\frac{S_5}{a_5}$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求函數(shù)f(x)=x2-2ax-1在[2,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.行列式$|{\begin{array}{l}1&2&3\\ 4&5&6\\ 7&8&9\end{array}}|$中,6的代數(shù)余子式的值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=ax+xlnx(a∈R),曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為2.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若2f(x)一(k+1)x+k>0(k∈Z)對(duì)任意x>1都成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB=$\sqrt{2}$,AB=2,PA=1.
(1)求證:BC⊥平面PAC;
(2)若M是PC的中點(diǎn),求二面角M-AD-C的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案