3.已知雙曲線M:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1與橢圓N:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)共焦點,且橢圓N過點(2$\sqrt{2}$,1)
(1)求橢圓N的長軸長與短軸長
(2)設橢圓N與雙曲線M在第一象限的交點為A,公共的左焦點為F,求|AF|的值.

分析 (1)求得雙曲線的焦點坐標,可得橢圓的c=3,再由點滿足橢圓方程,解方程可得a,b,進而得到橢圓方程和長軸長和短軸長;
(2)求得左焦點坐標,聯(lián)立雙曲線方程和橢圓方程,求得交點A的坐標,運用兩點的距離公式計算即可得到所求值.

解答 解:(1)雙曲線M:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的焦點為(±3,0),
由題意可得橢圓的c=3,即a2-b2=9,
又橢圓N過點(2$\sqrt{2}$,1),可得$\frac{8}{{a}^{2}}$+$\frac{1}{^{2}}$=1,
解方程可得a=2$\sqrt{3}$,b=$\sqrt{3}$,
可得橢圓的方程為$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1,
即有橢圓N的長軸長為4$\sqrt{3}$,短軸長為2$\sqrt{3}$;
(2)由題意可得F(-3,0),
聯(lián)立橢圓方程和雙曲線的方程,可得:
$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}=1}\\{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得A($\frac{4\sqrt{3}}{3}$,$\frac{\sqrt{15}}{3}$),
可得|AF|=$\sqrt{(\frac{4\sqrt{3}}{3}+3)^{2}+(\frac{\sqrt{15}}{3})^{2}}$=2(1+$\sqrt{3}$).

點評 本題考查雙曲線和橢圓的方程和性質,考查聯(lián)立方程組求交點,以及兩點的距離公式,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.平面α∥平面β,點A、C在平面α內,點B、D在平面β內,直線AB與直線CD相交于點S,設AS=18,BS=9,CD=24,求CS的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)上為增函數(shù),f(3)=0,則不等式f(2x-1)≥0的解為( 。
A.$[{-1,\frac{1}{2}})∪[{2,+∞})$B.$[{-1,\frac{1}{2}}]∪({2,+∞})$C.[2,+∞)D.$[{-1,\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的傾斜角為$\frac{2π}{3}$,離心率為e,$\frac{{a}^{2}+{e}^{2}}$最小值為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的右焦點F作一條漸近線的垂線,垂足為P,線段OP的垂直平分線交y軸于點Q(其中O為坐標原點).若△OFP的面積是△OPQ的面積的4倍,則該雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知雙曲線的一條漸近線方程是y=$\sqrt{3}$x,它的一個焦點在拋物線y2=8x的準線上,則該雙曲線的標準方程為x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.定義在R上的偶函數(shù)f(x)在(-∞,0)上單調遞增,設a=f(3),$b=f(-\sqrt{2})$,c=f(2),則a,b,c大小關系是( 。
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,四棱錐P-ABCD中,側面PDC是正三角形,底面ABCD是邊長為$2\sqrt{3}$的菱形,∠DAB=120°,且側面PDC與底面垂直,M為PB的中點.
(1)求證:PA⊥CD;
(2)求三棱錐A-CDM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在平面直角坐標系內,直線l:2x+y-2=0,將l與兩坐標軸圍成的封閉圖形繞y軸旋轉一周,所得幾何體的體積為$\frac{2}{3}π$.

查看答案和解析>>

同步練習冊答案