現(xiàn)將n枚硬幣摞在一起,要求正面不能相對(duì),則有
 
種摞法.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:應(yīng)用題,排列組合
分析:分類討論,即可得出結(jié)論.
解答: 解:由題意,2枚硬幣摞在一起,第1次正面向上,只有1種,第1次反面向上時(shí),有2種,共3種;
3枚硬幣摞在一起,第1次正面向上,只有1種,第1次反面向上時(shí),有3種,共4種;
n枚硬幣摞在一起,第1次正面向上,只有1種,第1次反面向上時(shí),有n種,共n+1種.
故答案為:n+1.
點(diǎn)評(píng):本題考查計(jì)數(shù)原理的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)與g(x)的公共定義域?yàn)镮,函數(shù)h(x)滿足:對(duì)任意x∈I,點(diǎn)(x,h(x))與點(diǎn)(x,g(x))均關(guān)于點(diǎn)(x,f(x))對(duì)稱,若f(x)=alnx-x2+ax(a>0),對(duì)任意x∈R,函數(shù)g(x)滿足2g(x)-g(1-x)=2ex-
1
ex-1
+1,其中e=2.71828…為自然對(duì)數(shù)的底數(shù),有下列命題:
①當(dāng)a=1時(shí),曲線y=h(x)在x=1處的切線的斜率為-e-2;
②當(dāng)a=1,x∈[1,+∞)時(shí),函數(shù)h(x)的值域?yàn)椋?∞,-e-1];
③若函數(shù)f(x)在(0,2)內(nèi)不單調(diào),則a的取值范圍為(0,2);
④設(shè)函數(shù)F(x)=bln[g(x)-1]+f′(x)+2x-a,其中b>0,f′(x)為f(x)的導(dǎo)函數(shù),若O為坐標(biāo)原點(diǎn),函數(shù)F(x)的圖象為C,則對(duì)任意點(diǎn)M∈C,都存在唯一點(diǎn)N∈C,使得tan∠MON=b.
其中真命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asin2x+bsinxcosx滿足f(
π
6
)=f(
2
)=2

(1)求實(shí)數(shù)a,b的值以及函數(shù)f(x)的最小正周期;
(2)記g(x)=f(x+t),若函數(shù)g(x)是偶函數(shù),求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(1+x)+
a
2
x2-x(a≥0).
(1)若f(x)>0對(duì)x∈(0,+∞)都成立,求a的取值范圍;
(2)已知e為自然對(duì)數(shù)的底數(shù),證明:?n∈N*,
e
<(1+
1
n2
)(1+
2
n2
)…(1+
n
n2
)<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,函數(shù)f(x)=x2-mx+m.
(1)若存在x使得f(x)<0,求m的取值范圍;
(2)若實(shí)x1,x2數(shù)滿足x1<x2,且f(x1)≠f(x2),證明:方程f(x)=
1
2
[f(x1)+f(x2)]至少有一個(gè)實(shí)根x0∈(x1,x2);
(3)設(shè)F(x)=f(x)+1-m-m2,且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P是底面邊長(zhǎng)為2
3
,高為2的正三棱柱表面上一點(diǎn),MN是該棱柱內(nèi)切球的一條直徑,則
PM
PN
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosx=
1-m
2m+3
有根,則m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足a1,
a2
a1
,
a3
a2
,…,
an
an-1
,…是首項(xiàng)為1,公比為2的等比數(shù)列,則a6=( 。
A、21008
B、229968
C、25050
D、32768

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若z∈C,且1+z+z2=0,則1+z+z2+…+z100=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案