13.曲線y=2cos(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$)和直線y=$\frac{1}{2}$在y軸右側(cè)的交點(diǎn)的橫坐標(biāo)按從小到大的順序依次記為P1,P2,P3,…,則|P3P7|=( 。
A.πB.C.D.

分析 由三角函數(shù)的誘導(dǎo)公式化簡曲線解析式,由此得到去下為周期函數(shù),得到|P3P7|的距離.

解答 解:∵y=2cos(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$)=cos2x-sin2x=cos2x,
∴函數(shù)y為周期函數(shù),T=π,
∵曲線y和直線y=$\frac{1}{2}$在y軸右側(cè)的每個周期的圖象都有兩個交點(diǎn)
∴P3和P7相隔2個周期,
故|P3P7|=2π.
故選:B

點(diǎn)評 本題考查三角函數(shù)的化簡,以及數(shù)形結(jié)合思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,且滿足bc=5,cos$\frac{A}{2}$=$\frac{3\sqrt{10}}{10}$.
(Ⅰ)求△ABC的面積;
(Ⅱ)若sinB=5sinC,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+4,x≥1}\\{lo{g}_{2}(1-x),x<1}\\{\;}\end{array}\right.$,則f(f(-1))等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的焦距為2$\sqrt{3}$,一條準(zhǔn)線方程為x=$\frac{4\sqrt{3}}{3}$.過點(diǎn)(0,-2)的直線l交橢圓于A,C兩點(diǎn)(異于橢圓頂點(diǎn)),橢圓的上頂點(diǎn)為B,直線AB,BC的斜率分別為k1,k2
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)∠CAB=90°時,求直線l的斜率;
(3)當(dāng)直線l的斜率變化時,求k1•k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),過點(diǎn)A作準(zhǔn)線l的垂線,垂足為E,當(dāng)A點(diǎn)的坐標(biāo)為(3,y1)時,△AEF為正三角形,則此時△AEF的面積為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$sin(\frac{π}{6}-α)=cos(\frac{π}{6}+α)$,則cos2α=( 。
A.1B.-1C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sin(x+θ)+mcos(x+2θ),其中m∈R,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).若f($\frac{π}{2}$)=0,f(π)=1
(1)求m,θ的值;
(2)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,f(A)=-$\frac{1}{2}$,a=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.圓C1:x2+y2=4與圓C2:x2+y2-4x+2y+4=0的公切線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.△ABC滿足:AB=4,AC=2,A=$\frac{π}{3}$,已知AD垂直BC于點(diǎn)D,E,F(xiàn)為AB,AC中點(diǎn),則$\overrightarrow{DE}$•$\overrightarrow{DF}$=1.

查看答案和解析>>

同步練習(xí)冊答案