14.△ABC中,∠A=45°,a=$\sqrt{14-\sqrt{2}}$,且S△ABC=$\frac{\sqrt{2}}{4}$,b>c,則b=2+$\sqrt{3}$,c=2-$\sqrt{3}$.

分析 利用余弦定理a2=b2+c2-2bccosA,解得b2+c2-$\sqrt{2}$bc=14-$\sqrt{2}$,
由三角形的面積公式,S△ABC=$\frac{1}{2}$bcsinA,求得bc=1,聯(lián)立解得b和c的值.

解答 解由余弦定理:a2=b2+c2-2bccosA,
b2+c2-$\sqrt{2}$bc=14-$\sqrt{2}$,
S△ABC=$\frac{\sqrt{2}}{4}$,S△ABC=$\frac{1}{2}$bcsinA,
∴bc=1,①
∴b2+c2=14,②
b>c,
聯(lián)立解得:b=2+$\sqrt{3}$,c=2-$\sqrt{3}$,
故答案為:2+$\sqrt{3}$,2-$\sqrt{3}$.

點評 本題考查余弦定理以三角形的面積公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.直線過點P(2,3)且與直線l1:x+2y-1=0和直線l2:3x+4y+5=0交于A、B兩點,且AB恰好被點P平分,求這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)F1、F2分別為雙曲線$C:{x^2}-\frac{y^2}{24}=1$的左、右焦點,P為雙曲線C在第一象限上的一點,若$\frac{{|P{F_1}|}}{{|P{F_2}|}}=\frac{4}{3}$,則△PF1F2內(nèi)切圓的面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.關(guān)于雙曲線$\frac{x^2}{16}-\frac{y^2}{4}=1$與$\frac{y^2}{16}-\frac{x^2}{4}=1$的焦距和漸近線,下列說法正確的是(  )
A.焦距相等,漸近線相同B.焦距相等,漸近線不相同
C.焦距不相等,漸近線相同D.焦距不相等,漸近線不相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.雙曲線$M:{x^2}-\frac{y^2}{b^2}=1$的左,右焦點分別為F1,F(xiàn)2,記|F1F2|=2c,以坐標(biāo)原點O為圓心,c為半徑的圓與雙曲線M在第一象限的交點為P,若|PF1|=c+2,則P點的橫坐標(biāo)為$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,a2+a3=8,前7項和S7=49,則數(shù)列{an}的公差等于( 。
A.1B.2C.$\frac{20}{3}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中存在一點O,滿足∠BAO=∠CAO=∠CBO=∠ACO.求證:AB2=BC•AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足${a_1}=511,{a_6}=-\frac{1}{2}$,且數(shù)列{an}的每一項加上1后成為等比數(shù)列.
(Ⅰ)求{an};
(Ⅱ)令bn=|log2(an+1)|,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線與直線$\sqrt{3}x-y+1=0$平行,則雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步練習(xí)冊答案