9.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+(3a-1)x,若方程f(x)=|ex-1|(e為自然對(duì)數(shù)的底)有且僅有兩個(gè)不相等的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為a≤$\frac{2}{3}$.

分析 由題意y=|ex-1|的圖象如圖所示,對(duì)二次函數(shù)分類討論,利用方程f(x)=|ex-1|(e為自然對(duì)數(shù)的底)有且僅有兩個(gè)不相等的實(shí)數(shù)解,即可求出實(shí)數(shù)a的取值范圍.

解答 解:由題意y=|ex-1|的圖象如圖所示.
當(dāng)x≤0時(shí),f(x)=x2+(3a-1)x的對(duì)稱軸為x=$\frac{1-3a}{2}$,
$\frac{1-3a}{2}$≥0,即a≤$\frac{1}{3}$,方程f(x)=|ex-1|(e為自然對(duì)數(shù)的底)有且僅有兩個(gè)不相等的實(shí)數(shù)解.
$\frac{1-3a}{2}$<0,即a>$\frac{1}{3}$,方程f(x)=|ex-1|(e為自然對(duì)數(shù)的底)有且僅有兩個(gè)不相等的實(shí)數(shù)解.
只需要x>0,f(x)=-x2+(3a-1)x與y=ex-1只有1個(gè)交點(diǎn)(0,0)
由y=ex-1可得y′=ex,x=0時(shí),y′=1
由f(x)=-x2+(3a-1)x可得f′(x)=-2x+(3a-1)
令f′(0)=1,可得a=$\frac{2}{3}$,
∴$\frac{1}{3}$<a≤$\frac{2}{3}$,
綜上所述,a≤$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查分段函數(shù),考查函數(shù)圖象的運(yùn)用,考查分類討論的數(shù)學(xué)思想,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)焦點(diǎn)F1的直線交橢圓于A,B兩點(diǎn),若△ABF2的內(nèi)切圓的面積為4π,設(shè)A,B的兩點(diǎn)坐標(biāo)分別為A(x1,y1),B(x2,y2),則|y1-y2|值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知F1,F(xiàn)2分別為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn),過(guò)F1的直線l與雙曲線C的左右兩支分別交于A,B兩點(diǎn),若|AB|:|BF2|:|AF2|=4:3:5,則雙曲線的離心率為(  )
A.$\sqrt{13}$B.$\sqrt{15}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知點(diǎn)A(-3,1,-4),則點(diǎn)A關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為(  )
A.(-3,-1,4)B.(-3,-1,-4)C.(3,1,4)D.(3,-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若十進(jìn)制數(shù)26等于k進(jìn)制數(shù)32,則k等于( 。
A.4B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=Asin(2ωx+φ)(其中A>0,ω>0,-π<φ<π)在x=$\frac{π}{3}$處取得極大值2,其圖象與x軸相鄰兩個(gè)交點(diǎn)的距離為$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)求f(x)-$\sqrt{3}$≥0的解集;
(3)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來(lái)得$\frac{1}{2}$,再把所得到的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{12}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.把十進(jìn)制的數(shù)101轉(zhuǎn)化為四進(jìn)制數(shù),得( 。
A.1121(4)B.1211(4)C.1021(4)D.1201(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若a,b,c為Rt△ABC的三邊,其中c為斜邊,那么當(dāng)n>2,n∈N*時(shí),an+bn與cn的大小關(guān)系為an+bn<cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)直線l與拋物線y2=4x相交于A,B兩點(diǎn),過(guò)原點(diǎn)O作l的垂線,垂足為M,當(dāng)$\overrightarrow{OA}$$•\overrightarrow{OB}$取最小值時(shí),點(diǎn)M的軌跡方程是x2+y2-2x=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案