【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經(jīng)預(yù)測一個(gè)橋墩的工程費(fèi)用為256萬元,距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+ )x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為y萬元.假設(shè)需要新建n個(gè)橋墩.
(1)寫出n關(guān)于x的函數(shù)關(guān)系式;
(2)寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)m=640米時(shí),需新建多少個(gè)橋墩才能使y最?

【答案】
(1)解:
(2)解:∴

=


(3)解:由(1)知,

令f'(x)=0,得 ,所以x=64

當(dāng)0<x<64時(shí)f'(x)<0,f(x)在區(qū)間(0,64)內(nèi)為減函數(shù);

當(dāng)64<x<640時(shí),f'(x)>0,f(x)在區(qū)間(64,640)內(nèi)為增函數(shù),

所以f(x)在x=64處取得最小值,

此時(shí),

故需新建9個(gè)橋墩才能使y最小


【解析】(1)利用兩墩相距m米,寫出n關(guān)于x的函數(shù)關(guān)系式;(2)根據(jù)題意余下工程的費(fèi)用y為橋墩的總費(fèi)用加上相鄰兩墩之間的橋面工程總費(fèi)用即可得到y(tǒng)的解析式;(3)把m=640米代入到y(tǒng)的解析式中并求出y′令其等于0,然后討論函數(shù)的增減性判斷函數(shù)的最小值時(shí)m的值代入 ﹣1中求出橋墩個(gè)數(shù)即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +3lnax﹣x,g(x)=xex+cosx(a≠0).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x1∈[1,2],x2∈[0,3],使得f( )>g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x;
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[﹣3,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為的正半軸,建立平面直角坐標(biāo)系.

(1)若曲線為參數(shù))與曲線相交于兩點(diǎn),求;

(2)若是曲線上的動點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(sinx,cosx), =(sinx,sinx),函數(shù)f(x)=
(1)求f(x)的對稱軸方程;
(2)求使f(x)≥1成立的x的取值集合;
(3)若對任意實(shí)數(shù) ,不等式f(x)﹣m<2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有能力互異的3人應(yīng)聘同一公司,他們按照報(bào)名順序依次接受面試,經(jīng)理決定“不錄用第一個(gè)接受面試的人,如果第二個(gè)接受面試的人比第一個(gè)能力強(qiáng),就錄用第二個(gè)人,否則就錄用第三個(gè)人”,記該公司錄用到能力最強(qiáng)的人的概率為p,錄用到能力中等的人的概率為q,則(p,q)=(
A.( ,
B.( ,
C.(
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(Ⅰ)求b的值;
(Ⅱ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為(
A.(﹣∞,0)
B.(0,+∞)
C.
D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,是圓上的一個(gè)動點(diǎn),線段的垂直平分線與線段相交于點(diǎn).

(Ⅰ)求點(diǎn)的軌跡方程;

(Ⅱ)記點(diǎn)的軌跡為,,是直線上的兩點(diǎn),滿足,曲線的過,的兩條切線(異于)交于點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案