19.在復(fù)平面內(nèi),與復(fù)數(shù)z=1-2i對應(yīng)的點(diǎn)所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復(fù)數(shù)的幾何意義求解即可.

解答 解:在復(fù)平面內(nèi),復(fù)數(shù)z=1-2i對應(yīng)的點(diǎn)(1,-2),所在的象限是第四象限.
故選:D.

點(diǎn)評 本題考查復(fù)數(shù)的幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.滿足關(guān)系式{2,3}⊆A⊆{1,2,3,4}的集合A的個數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知tanx=2,則$\frac{2cosx-sinx}{cosx}$( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a2+b2-c2=ab=$\sqrt{3}$,則△ABC的面積為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow a$,$\overrightarrow b$滿足:|$\overrightarrow a$|=1,|$\overrightarrow b$|=6,$\overrightarrow a$•($\overrightarrow b$-$\overrightarrow{a}$)=2
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角
(2)求|2$\overrightarrow a$-$\overrightarrow b$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.不等式x2-5x-14<0的解集為(-2,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)f(x)=$\left\{\begin{array}{l}{aln(x+1),x≥0}\\{\frac{1}{3}{x}^{3}-ax,x<0}\end{array}\right.$g(x)=ex-1,函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))與點(diǎn)(-1,f(-1))處的切線互相垂直,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)$\overrightarrow m,\overrightarrow n$是兩個不共線的向量,若$\overrightarrow{AB}=\overrightarrow m+5\overrightarrow n,\overrightarrow{BC}=-2\overrightarrow{m}+8\overrightarrow n,\overrightarrow{CD}=4\overrightarrow m+2\overrightarrow n$,則( 。
A.A,B,C三點(diǎn)共線B.A,B,D三點(diǎn)共線C.A,C,D三點(diǎn)共線D.B,C,D三點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給定命題:p:x<3,q:$\frac{3-x}{x-2}$>0,則p是q的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案