A. | a=7,b=14,A=30° | B. | b=4,c=5,B=30° | C. | b=25,c=3,C=150° | D. | a=$\sqrt{6}$,b=$\sqrt{3}$,B=60° |
分析 對于A,由a,b及sinA的值,利用正弦定理分別求出各選項中sinB的值,由B為三角形的內(nèi)角,可得B=90°,只有一解,本選項不合題意;
對于B,由正弦定理可求sinC的值,結(jié)合范圍C∈(30°,180°),可求C有2解,本選項符合題意;
對于C,利用大邊對大角及三角形內(nèi)角和定理即可得解B+C>300°,矛盾,這樣的三角形不存在.
對于D,可求sinA=$\frac{\sqrt{6}}{2}$>1,這樣的A不存在,這樣的三角形不存在.
解答 解:A、∵a=7,b=14,A=30°,
∴由正弦定理得:sinB=$\frac{bsinA}{a}$=$\frac{14×\frac{1}{2}}{7}$=1,
又B為三角形的內(nèi)角,
∴B=90°,
故只有一解,本選項不合題意;
B、∵b=4,c=5,B=30°,
∴由正弦定理得:sinC=$\frac{csinB}$=$\frac{5×\frac{1}{2}}{4}$=$\frac{5}{8}$,
又C為三角形的內(nèi)角,
∴C∈(30°,180°),
可得C有2解,本選項符合題意;
C、∵b=25>c=3,
∴B>C=150°,
∴B+C>300°,矛盾,這樣的三角形不存在.
D、∵a=$\sqrt{6}$,b=$\sqrt{3}$,B=60°,
∴sinA=$\frac{asinB}$=$\frac{\sqrt{6}×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{\sqrt{6}}{2}$>1,這樣的A不存在,這樣的三角形不存在.
故選:B.
點評 此題屬于解三角形的題型,涉及的知識有:正弦定理,三角形的邊角關(guān)系,正弦函數(shù)的圖象與性質(zhì),以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{1}{2}$或$\frac{3}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)y=g[g(x)]是偶函數(shù),函數(shù)y=f(x)g(x)是周期函數(shù) | |
B. | 函數(shù)y=g[g(x)]是奇函數(shù),函數(shù)y=f[g(x)]不一定是周期函數(shù) | |
C. | 函數(shù)y=g[g(x)]是偶函數(shù),函數(shù)y=f[g(x)]是周期函數(shù) | |
D. | 函數(shù)y=g[g(x)]是奇函數(shù),函數(shù)y=f(x)g(x)是周期函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有一個解 | B. | 有兩個解 | C. | 無解 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等邊三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com