【題目】已知拋物線y2=2x和圓x2+y2﹣x=0,傾斜角為 的直線l經(jīng)過拋物線的焦點(diǎn),若直線l與拋物線和圓的交點(diǎn)自上而下依次為A,B,C,D,則|AB|+|CD|= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x>0,集合 ,若M∩N={1},則M∪N=( )
A.{0,1,2,4}
B.{0,1,2}
C.{1,4}
D.{0,1,4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知角x始邊與x軸的非負(fù)半軸重合,與圓x2+y2=4相交于點(diǎn)A,終邊與圓x2+y2=4相交于點(diǎn)B,點(diǎn)B在x軸上的射影為C,△ABC的面積為S(x),函數(shù)y=S(x)的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題: ①x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2﹣x , 則x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+ ,x0∈(0,+∞),f(x0)=1;
④在△ABC中,若A>B,則sin A>sin B.
其中真命題是 . (將所有真命題序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的上、下焦點(diǎn)分別為F1 , F2 , 上焦點(diǎn)F1到直線 4x+3y+12=0的距離為3,橢圓C的離心率e= .
(I)若P是橢圓C上任意一點(diǎn),求| || |的取值范圍;
(II)設(shè)過橢圓C的上頂點(diǎn)A的直線l與橢圓交于點(diǎn)B(B不在y軸上),垂直于l的直線與l交于點(diǎn)M,與x軸交于點(diǎn)H,若 =0,且| |=| |,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公差不為0的等差數(shù)列{an}中,a22=a3+a6 , 且a3為a1與a11的等比中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(﹣1)n ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , a1=a,當(dāng)n≥2時(shí), =3n2an+S ,an≠0,n∈N*.
(1)求a的值;
(2)設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn , 且cn=3n﹣1+a5 , 求使不等式4Tn>S10成立的最小正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),a>0).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cosθ.
(Ⅰ)說明C1是哪一種曲線,并將C1的方程化為極坐標(biāo)方程;
(Ⅱ)直線C3的極坐標(biāo)方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點(diǎn)都在C3上,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國(guó)漢字聽寫大會(huì)》的活動(dòng).為響應(yīng)學(xué)校號(hào)召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績(jī)畫出莖葉圖,如圖所示(把頻率當(dāng)作概率).
(1)求甲、乙兩人成績(jī)的平均數(shù)和中位數(shù);
(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com