【題目】設,其中實數(shù)滿足,若的最大值為12,則實數(shù)=________.
【答案】
【解析】
作出題中不等式組表示的平面區(qū)域,再將目標函數(shù)z=kx+y對應的直線進行平移.經(jīng)討論可得當k<0時,找不出實數(shù)k的值使z的最大值為12;當k≥0時,結(jié)合圖形求得最優(yōu)解,代入目標函數(shù),即可得解.
作出不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,
其中A(2,0),B(2,3),C(4,4)
設z=F(x,y)=kx+y,將直線l:z=kx+y進行平移,可得
①當k<0時,直線l的斜率-k>0,
由圖形可得當l經(jīng)過點B(2,3)或C(4,4)時,z可達最大值,
此時,zmax=F(2,3)=2k+3或zmax=F(4,4)=4k+4
但由于k<0,使得2k+3<12且4k+4<12,不能使z的最大值為12,
故此種情況不符合題意;
②當k≥0時,直線l的斜率-k≤0,
由圖形可得當l經(jīng)過點C時,目標函數(shù)z達到最大值
此時zmax=F(4,4)=4k+4=12,解之得k=2,符合題意
綜上所述,實數(shù)k的值為2
故答案為:2
科目:高中數(shù)學 來源: 題型:
【題目】某市規(guī)定,高中學生在校期間須參加不少于80小時的社區(qū)服務才合格.某校隨機抽取20位學生參加社區(qū)服務的數(shù)據(jù),按時間段(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.
(1)求抽取的20人中,參加社區(qū)服務時間不少于90小時的學生人數(shù);
(2)從參加社區(qū)服務時間不少于90小時的學生中任意選取2人,求所選學生的參加社區(qū)服務時間在同一時間段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐O﹣ABCD中,OA⊥底面ABCD,且底面ABCD是邊長為2的正方形,且OA=2,M,N分別為OA,BC的中點.
(1)求證:直線MN平面OCD;
(2)求點B到平面DMN的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,為其焦點,拋物線的準線交軸于點T,直線l交拋物線于A,B兩點。
(1)若O為坐標原點,直線l過拋物線焦點,且,求△AOB的面積;
(2)當直線l與坐標軸不垂直時,若點B關于x軸的對稱點在直線AT上,證明直線l過定點,并求出該定點的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,,E,F分別為AB,CD的中點,,M為DF中點.現(xiàn)將四邊形BEFC沿EF折起,使平面平面AEFD,得到如圖所示的多面體.在圖中,
(1)證明:;
(2)求二面角E-BC-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),在一個周期內(nèi)的圖象如下圖所示.
(1)求函數(shù)的解析式;
(2)設,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的一個最高點為,與點相鄰一個最低點為,直線與軸的交點為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)若時,函數(shù)恰有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)調(diào)查,某地區(qū)有300萬從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民,人均年收入6000元,為了增加農(nóng)民的收入,當?shù)卣e極引進資本,建立各種加工企業(yè),對當?shù)氐霓r(nóng)產(chǎn)品進行深加工,同時吸收當?shù)夭糠洲r(nóng)民進入加工企業(yè)工作,據(jù)估計,如果有萬人進企業(yè)工作,那么剩下從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民的人均年收入有望提高,而進入企業(yè)工作的農(nóng)民的人均年收入為元.
(1)在建立加工企業(yè)后,多少農(nóng)民進入企業(yè)工作,能夠使剩下從事傳統(tǒng)農(nóng)業(yè)農(nóng)民的總收入最大,并求出最大值;
(2)為了保證傳統(tǒng)農(nóng)業(yè)的順利進行,限制農(nóng)民加入加工企業(yè)的人數(shù)不能超過總?cè)藬?shù)的,當?shù)卣绾我龑мr(nóng)民,即取何值時,能使300萬農(nóng)民的年總收入最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com