18.如圖,點P是?ABCD邊AB上的一點,射線CP交DA的延長線于點E,若$\frac{AP}{CD}$=$\frac{2}{5}$,則$\frac{{S}_{△AEP}}{{S}_{△BCP}}$=$\frac{4}{9}$.

分析 由四邊形ABCD是平行四邊形,可證得△AEP∽△CBP,由$\frac{AP}{CD}$=$\frac{2}{5}$,推得$\frac{AP}{PB}$=$\frac{2}{3}$,根據(jù)相似三角形的面積之比等于相似比的平方即可證得結(jié)論.

解答 解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴△AEP∽△CBP,
∵$\frac{AP}{CD}$=$\frac{2}{5}$,
∴$\frac{AP}{PB}$=$\frac{2}{3}$,
則$\frac{{S}_{△AEP}}{{S}_{△BCP}}$=($\frac{AP}{PB}$)2=$\frac{4}{9}$.
故答案為$\frac{4}{9}$.

點評 本題主要考查了平行四邊形的性質(zhì),相似三角形的判定和性質(zhì),熟練掌握相似三角形的判定和性質(zhì)是解決問題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知點G(5,4),圓C1:(x-1)2+(y-4)2=25,過點G的動直線l與圓C1相交于E、F兩點,線段EF的中點為C,且C在圓C2上.
(1)若直線mx+ny-1=0(mn>0)經(jīng)過點G,求mn的最大值;
(2)求圓C2的方程;
(3)若過點A(1,0)的直線l1與圓C2相交于P,Q兩點,線段PQ的中點為M,l1與l2:x+2y+2=0的交點為N,求證:|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若關(guān)于x的一元二次方程(a-2)x2-2ax+a+1=0沒有實數(shù)解,求ax+3>0的解集{x|x<-$\frac{3}{a}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知銳角α,β滿足cosα=$\frac{2\sqrt{5}}{5}$,sin(α-β)=-$\frac{3}{5}$,則sinβ的值為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{25}$D.$\frac{\sqrt{5}}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x+$\frac{1}{2}$|+a|x-$\frac{3}{2}$|.
(1)當a=-1時,解不等式f(x)≤3x;
(2)當a=2時,若關(guān)于x的不等式4f(x)<2|1-b|的解集為空集,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=sinx+acosx圖象的一條對稱軸是x=$\frac{π}{4}$,且當x=θ時,函數(shù)g(x)=sinx+f(x)取得最大值,則cosθ=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.長方形ABCD中,AB=2,BC=1,E為CD的中點,則$\overrightarrow{AC}$•$\overrightarrow{BE}$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖([x]表示不超過x的最大整數(shù)),則輸出S的值為( 。
A.4B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=cos2x+6cos($\frac{π}{2}$-x)的最大值是5.

查看答案和解析>>

同步練習冊答案