11.有下列等式:①sin(π+α)=-sinα;②cos($\frac{π}{2}$+α)=-sinα;③tan(π-α)=-tanα,其中正確等式的個數(shù)為( 。
A.0B.1C.2D.3

分析 利用誘導(dǎo)公式,判斷各個選項(xiàng)是否正確,從而得出結(jié)論.

解答 解:根據(jù)誘導(dǎo)公式 ①sin(π+α)=-sinα正確;
②cos($\frac{π}{2}$+α)=-sinα正確;
③tan(π-α)=tan(-α)=-tanα正確,
故選:D.

點(diǎn)評 本題主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個長方體被一個平面所截,切去一部分,得到一個幾何體,其三視圖如圖所示,則截面面積為( 。
A.$\sqrt{141}$B.2$\sqrt{141}$C.16$\sqrt{6}$D.4$\sqrt{141}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知{an}是一個無窮等比數(shù)列,則下列說法錯誤的是(  )
A.若c是不等于零的常數(shù),那么數(shù)列{c•an}也一定是等比數(shù)列
B.將數(shù)列{an}中的前k項(xiàng)去掉,剩余各項(xiàng)順序不變組成一個新的數(shù)列,這個數(shù)列一定是等比數(shù)列
C.{a2n-1}(n∈N*)是等比數(shù)列
D.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,那么S6、S12-S6、S18-S12也一定成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在復(fù)平面內(nèi),O是原點(diǎn),向量$\overrightarrow{OA}$對應(yīng)的復(fù)數(shù)是2+i,點(diǎn)A關(guān)于虛軸的對稱點(diǎn)為B,則向量$\overrightarrow{OB}$對應(yīng)的復(fù)數(shù)是(  )
A.1+2iB.-2+iC.2-iD.-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.證明不等式:
(1)a2+b2≥ab+a+b-1;
(2)若a>0,b>0,則$\sqrt{\frac{{a}^{2}+^{2}}{2}}$≥$\frac{a+b}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將函數(shù)f(x)=cos(x+φ)的圖象上每點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再將所得的圖象向左平移$\frac{π}{6}$個單位長度后得到的圖象關(guān)于坐標(biāo)原點(diǎn)對稱,則下列直線中是函數(shù)f(x)圖象的對稱軸的是( 。
A.x=-$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=-$\frac{5π}{12}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一個袋子中裝有三個編號分別為1,2,3的紅球和三個編號分別為1,2,3的白球,三個紅球按其編號分別記為a1,a2,a3,三個白球按其編號分別記為b1,b2,b3,袋中的6個球除顏色和編號外沒有任何差異,現(xiàn)從袋中一次隨機(jī)地取出兩個球,
(1)列舉所有的基本事件,并寫出其個數(shù);
(2)規(guī)定取出的紅球按其編號記分,取出的白球按其編號的2倍記分,取出的兩個球的記分之和為一次取球的得分,求一次取球的得分不小于6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平行四邊形ABCD中,點(diǎn)F為線段CD上靠近點(diǎn)D的一個三等分點(diǎn).若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow$,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若兩圓x2+y2-2mx=0與x2+(y-2)2=1相外切,則實(shí)數(shù)m的值為( 。
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$±\frac{3}{2}$D.$±\frac{9}{4}$

查看答案和解析>>

同步練習(xí)冊答案