A. | [$\frac{π}{8}$+2kπ,$\frac{5π}{8}$+2kπ](k∈Z) | B. | [$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ](k∈Z) | ||
C. | [-$\frac{3π}{8}$+2kπ,$\frac{π}{8}$+2kπ](k∈Z) | D. | [-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ](k∈Z) |
分析 先利用誘導公式將函數(shù)解析式化為y=cos(2x-$\frac{π}{4}$),結合余弦函數(shù)的單調性,結合2x-$\frac{π}{4}$∈[2kπ,π+2kπ],k∈Z,可得原函數(shù)的單調遞減區(qū)間.
解答 解:函數(shù)y=cos($\frac{π}{4}$-2x)=cos(2x-$\frac{π}{4}$),
由2x-$\frac{π}{4}$∈[2kπ,π+2kπ],k∈Z得:
x∈[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z,
即函數(shù)y=cos($\frac{π}{4}$-2x)的單調遞減區(qū)間是[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z,
故選:B.
點評 本題考查的知識點是余弦函數(shù)的圖象和性質,熟練掌握余弦函數(shù)的圖象和性質,是解答的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -5 A | B. | 5A | C. | 5$\sqrt{3}$ A | D. | 10 A |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {(-1,1),(1,1)} | B. | {1} | C. | [0,1] | D. | $[{0,\sqrt{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | r∈(0,1] | B. | r∈(1,$\frac{3}{2}$] | C. | r∈($\frac{3}{2}$,2] | D. | r∈(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{8}{27}$ | C. | $\frac{2}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com