【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊帧①N春聯(lián)、掛燈籠等方式來表達(dá)對新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動,顧客凡購物金額滿50元,則可以從“!弊帧⒋郝(lián)和燈籠這三類禮品中任意免費(fèi)領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類相同的概率是( )
A.B.C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).
(1)如果直線過拋物線的焦點(diǎn),求的值;
(2)如果,證明直線必過一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象如圖所示,點(diǎn)A,B,C在圖象上,,,并且軸
(1)求和的值及點(diǎn)B的坐標(biāo);
(2)若,且,求的值;
(3)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,橫坐標(biāo)不變,再將所得圖象各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,最后將所得圖象向右平移個單位,得到的圖象,若關(guān)于x的方程在區(qū)間上有兩個不同解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為2,左頂點(diǎn)與上頂點(diǎn)連線的斜率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點(diǎn),當(dāng)|MN|的值最大時,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.
(Ⅰ)求A∩B,(UA)∪(UB);
(Ⅱ)設(shè)集合C={x|m+1<x<2m-1},若B∩C=C,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,直線:與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)矩形在軸右側(cè),且頂點(diǎn)、在直線上,頂點(diǎn)、在橢圓上,若矩形的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,若在軸上的截距為,且.
(1)求直線和的交點(diǎn)坐標(biāo);
(2)已知直線經(jīng)過與的交點(diǎn),且在軸上截距是在軸上的截距的2倍,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,其中,由中的元素構(gòu)成兩個相應(yīng)的集合:
, .
其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.
若對于任意的,總有,則稱集合具有性質(zhì).
(Ⅰ)檢驗(yàn)集合與是否具有性質(zhì)并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合和.
(Ⅱ)對任何具有性質(zhì)的集合,證明.
(Ⅲ)判斷和的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com