20.將函數(shù)y=sin2x的圖象向下平移1個(gè)單位,再向右平移$\frac{π}{4}$單位,則所得圖象的函數(shù)解析式為( 。
A.y=-cos2xB.y=-2sin2xC.y=-2cos2xD.y=sin(2x-$\frac{π}{4}$)-1

分析 根據(jù)三角函數(shù)的平移關(guān)系結(jié)合三角函數(shù)的倍角公式進(jìn)行化簡即可.

解答 解:將函數(shù)y=sin2x的圖象向下平移1個(gè)單位得到y(tǒng)=sin2x-1,
然后向右平移$\frac{π}{4}$單位得到y(tǒng)=sin2(x-$\frac{π}{4}$)-1=sin(2x-$\frac{π}{2}$)-1=-cos2x-1=-(2cos2x-1)-1=-2cos2x,
故選:C

點(diǎn)評(píng) 本題主要考查三角函數(shù)解析式的求解,根據(jù)三角函數(shù)的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.向量$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(-4,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=( 。
A.$\frac{8}{3}$B.-$\frac{8}{3}$C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ex-ax+1,其中a為實(shí)常數(shù),e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=e時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有最小值,并設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤2;
(3)設(shè)n∈N*,試比較$\frac{n(n+1)}{2}$與ln(e-1)+ln(2e-1)+ln(3e-1)…+ln(ne-1)的大小并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正項(xiàng)等比數(shù)列{an}前n項(xiàng)和為Sn,且滿足S3=$\frac{7}{2}$,a6,3a5,a7成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列bn=$\frac{1}{(2lo{g}_{2}{a}_{n+1}+3)^{2}-1}$,且數(shù)列bn的前n項(xiàng)的和Tn,試比較Tn與$\frac{1}{4}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若拋物線$y=\frac{1}{8}{x^2}$的焦點(diǎn)F與雙曲線x2-y2=a的一個(gè)焦點(diǎn)重合,則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在正方體ABCD-A1B1C1D1中,AB1,BC1上分別有兩點(diǎn)E,F(xiàn),且$\frac{{B}_{1}E}{EA}$=$\frac{{C}_{1}F}{FB}$=$\frac{1}{2}$,求證:EF∥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.二項(xiàng)式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展開式中$\sqrt{x}$的系數(shù)是(  )
A.-$\frac{15}{2}$B.$\frac{15}{2}$C.-$\frac{35}{8}$D.$\frac{35}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點(diǎn)P(x,y)是圓(x+2)2+y2=1上任意一點(diǎn),則$\frac{y-2}{x-1}$的最大值為$\frac{3+\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是( 。
A.鈍角是第二象限角B.第二象限角比第一象限角大
C.大于90°的角是鈍角D.-165°是第二象限角

查看答案和解析>>

同步練習(xí)冊(cè)答案