【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知過點的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于兩點,且,求實數(shù)的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)的圖象在處的切線方程;
(2)若,試討論方程的實數(shù)解的個數(shù);
(3)當(dāng)時,若對于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=-3x2+a(6-a)x+6.
(1)解關(guān)于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集為(-1,3),求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點.
(Ⅰ)求點的軌跡方程;
(Ⅱ)若直線與點的軌跡有兩個不同的交點和,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)對于任意的x都滿足f(x+1)=-f(x),當(dāng)-1≤x<1時,f(x)=x3,若函數(shù)g(x)=f(x)-loga|x|至少有6個零點,則a的取值范圍是( )
A. ∪(5,+∞) B. ∪
C. ∪(5,7) D. ∪[5,7)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓短軸的左右兩個端點分別為A,B,直線與x軸、y軸分別交于兩點E,F(xiàn),交橢圓于兩點C,D.
(1)若,求直線的方程;
(2)設(shè)直線AD,CB的斜率分別為,若,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標(biāo)有字母A、3個球標(biāo)有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗按如下規(guī)則進行:先在第一號盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號盒子中任取一個球;若第一次取得標(biāo)有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗成功,那么試驗成功的概率為( )
A.0.59 B.0.54 C.0.8 D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+y)=f(x)+f(y),當(dāng)x>0時,有,且f(1)=﹣2
(1)求f(0)及f(﹣1)的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并利用定義加以證明;
(3)求解不等式f(2x)﹣f(x2+3x)<4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com