已知x∈(-π,-
π
2
),且cosx=-
4
5
,求tanx的值.
考點:同角三角函數(shù)基本關系的運用
專題:計算題,三角函數(shù)的求值
分析:運用同角的平方關系,求出sinx,再由商數(shù)關系,即可得到tanx.
解答: 解:x∈(-π,-
π
2
),且cosx=-
4
5
,
則sinx=-
1-cos2x
=-
1-
16
25
=-
3
5
,
則tanx=
sinx
cosx
=
-
3
5
-
4
5
=
3
4
點評:本題考查三角函數(shù)的化簡和求值,考查同角三角函數(shù)的平方關系和商數(shù)關系,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某觀測站D的正北6海里和正西2海里處分別有海島A、B,現(xiàn)在A、B連線的中點E處有一艘漁船因故障拋錨.若在D的正東3海里C處的輪船接到觀測站D的通知后,立即啟航沿直線距離前去營救,則該艘輪船行駛的路程為
 
海里.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2x+2
3
sinxcosx-sin2x
(1)求f(
π
6
)的值
(2)求函數(shù)的單調增區(qū)間
(3)若x∈[-
π
6
,
π
3
],求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x∈(0,
π
3
)時,y=sin(3x-
π
6
)的取值范圍是( 。
A、(-
1
2
,
1
2
B、[-
1
2
,1]
C、(-
1
2
,1)
D、(-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1
(a>b>0)的左右兩個焦點,以線段F1F2為直徑的圓與雙曲線的一條漸近線交于點M,與雙曲線交于點N(設M,N均在第一象限),當直線MF1與直線ON平行時,雙曲線的離心率取值為e0,則e0所在的區(qū)間為( 。
A、(1,
2
B、(
2
,
3
C、(
3
,2
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a2=2,a4=4,則a1=
 
,a6=
 
,S10=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log2(x2-ax+3a)在[2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是(  )
A、a≤4B、a≤2
C、-4<a≤4D、-2≤a≤4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點O為△ABC中任意一點,且有
OA
+2
OB
=λ
CO
,S△AOC:S△ABC=2:11,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 
 
1
-1
x3-x
(x2+1)3
dx

查看答案和解析>>

同步練習冊答案