20.如果函數(shù)f(x)=2x2-4(1-a)x+1在區(qū)間[3,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是[-2,+∞).

分析 由題意可得,利用二次函數(shù)的對(duì)稱軸與單調(diào)區(qū)間的關(guān)系,區(qū)間[3,+∞)在對(duì)稱軸的右側(cè),列出不等式,解此不等式求得a的取值范圍.

解答 解:f(x)=2x2-4(1-a)x+1的對(duì)稱軸為直線x=1-a,開口向上,
∵函數(shù)f(x)=2x2-4(1-a)x+1在區(qū)間[3,+∞)上是增函數(shù),
∴區(qū)間[3,+∞)在對(duì)稱軸的右側(cè),即1-a≤3,
可得-a≤2,
解得a≥-2.
∴實(shí)數(shù)a的取值范圍是[-2,+∞).
故答案為:[-2,+∞).

點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì)的應(yīng)用,考查計(jì)算能力,確定區(qū)間[3,+∞)在對(duì)稱軸的右側(cè)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=3sin($\frac{1}{2}$x-$\frac{π}{6}$)的振幅3,周期4π,頻率$\frac{1}{4π}$,相位$\frac{1}{2}$x-$\frac{π}{6}$,初相-$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和Sn=3n+m(m為常數(shù),n∈N+)
(1)求a1,a2,a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)m的值及an;
(3)對(duì)于(2)中的an,記f(n)=λa2n+1-4λan+1-7,若f(n)<0對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知tanα=2.
(1)求$\frac{{sin(π-α)+cos(α-\frac{π}{2})-cos(3π+α)}}{{cos(\frac{π}{2}+α)-sin(2π+α)+2sin(α-\frac{π}{2})}}$的值;
(2)求cos2α+sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.我艦在敵島A處南偏西50°的B處,且A,B距離為12海里,發(fā)現(xiàn)敵艦正離開島沿北偏西10°的方向以每小時(shí)10海里的速度航行.若我艦要用2小時(shí)追上敵艦,則其速度大小為14海里/小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知A,B,C是△ABC的三個(gè)內(nèi)角,向量$\overrightarrow{m}$=(-1,$\sqrt{3}$),$\overrightarrow{n}$=(cosA,sinA),且$\overrightarrow{m}$•$\overrightarrow{n}$=1
(1)求角A;
(2)求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.用計(jì)算機(jī)隨機(jī)產(chǎn)生的有序二元數(shù)組(x,y)滿足-1≤x≤1,-1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.十八屆五中全會(huì)公報(bào)指出:努力促進(jìn)人口均衡發(fā)展,堅(jiān)持計(jì)劃生育的基本政策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對(duì)夫婦可生育兩個(gè)孩子的政策.一時(shí)間“放開生育二胎”的消息引起社會(huì)的廣泛關(guān)注.為了解某地區(qū)社會(huì)人士對(duì)“放開生育二胎政策”的看法,某計(jì)生局在該地區(qū)選擇了 4000 人進(jìn)行調(diào)查(若所選擇的已婚的人數(shù)低于被調(diào)查總?cè)藬?shù)的78%,則認(rèn)為本次調(diào)查“失效”),就“是否放開生育二胎政策”的問(wèn)題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
態(tài)度
調(diào)查人群
放開不放開無(wú)所謂
已婚人士2200人200人y人
未婚人士680人x人z人
已知在被調(diào)查人群中隨機(jī)抽取1人,抽到持“不放開”態(tài)度的人的概率為0.08.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取400人進(jìn)行深入訪談,問(wèn)應(yīng)在持“無(wú)所謂”態(tài)度的人中抽取多少人?
(2)已知y≥710,z≥78,求本次調(diào)查“失效”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知f(x)的定義域?yàn)镽,f(1)=$\frac{1}{4}$,且滿足4f(x)f(y)=f(x+y)+f(x-y),則f(2016)=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案