10.函數(shù)y=3sin($\frac{1}{2}$x-$\frac{π}{6}$)的振幅3,周期4π,頻率$\frac{1}{4π}$,相位$\frac{1}{2}$x-$\frac{π}{6}$,初相-$\frac{π}{6}$.

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的解析式,直接寫出函數(shù)的振幅、周期、頻率、相位和初相即可.

解答 解:函數(shù)y=3sin($\frac{1}{2}$x-$\frac{π}{6}$)的振幅是A=3,
周期是T=$\frac{2π}{\frac{1}{2}}$=4π,
頻率是f=$\frac{1}{T}$=$\frac{1}{4π}$,
相位是ωx+φ=$\frac{1}{2}$x-$\frac{π}{6}$,
初相是φ=-$\frac{π}{6}$.
故答案為:3,4π,$\frac{1}{4π}$,$\frac{1}{2}$x-$\frac{π}{6}$,-$\frac{π}{6}$.

點(diǎn)評 本題考查了函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-3x+1
(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)求曲線在點(diǎn)(0,f(0))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若△ABC的BC邊上的高AD=BC,則$\frac{AC}{AB}$+$\frac{AB}{AC}$的取值范圍是$[2,\sqrt{5}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)不等式組$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到點(diǎn)(1,1)的距離大于1的概率是( 。
A.$\frac{4-π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\overrightarrow{m}$=(2,-1),$\overrightarrow{n}$=(-1,t),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,則實(shí)數(shù)t的值等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}是等差數(shù)列,a2+a7=12,a4a5=35,則an=2n-3或15-2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)z=i(i是虛數(shù)單位),則$\frac{2}{z}$+z2=( 。
A.-1+2iB.-1-2iC.1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知m∈R,p:?x0∈R,x02+2(m-3)x0+1<0,q:?x∈R,4x2+4(m-2)x+1>0恒成立.若p∨q為真,p∧q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如果函數(shù)f(x)=2x2-4(1-a)x+1在區(qū)間[3,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是[-2,+∞).

查看答案和解析>>

同步練習(xí)冊答案