2.已知f(x)為定義在R上的奇函數(shù),當(dāng)x∈(0,+∞)時,f(x)=2x+1,則當(dāng)x∈(-∞,0)時,f(x)=-2-x-1.

分析 任取x∈(-∞,0),則-x∈(0,+∞),利用f(x)為定義在R上的奇函數(shù),當(dāng)x∈(0,+∞)時,f(x)=2x+1,即可得出結(jié)論.

解答 解:任取x∈(-∞,0),則-x∈(0,+∞)
∵f(x)為定義在R上的奇函數(shù),當(dāng)x∈(0,+∞)時,f(x)=2x+1,
∴f(x)=-f(-x)=-2-x-1.
故答案為-2-x-1.

點評 考查利用函數(shù)的奇偶性求對稱區(qū)間上的解析式,是函數(shù)奇偶性的一個重要應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某產(chǎn)品在某零售攤位的零售價y(單位:元)與每天的銷售量y(單位:個)的統(tǒng)計資料如表所示,
x16171819
y50344131
由表可得回歸方程$\widehat{y}$=$\widehat{a}$-4x,據(jù)次模型預(yù)測零售價為20元時,每天銷售量為( 。
A.26個B.27個C.28個D.29個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若圓C1:x2+y2=m與圓C2:x2+y2-6x-8y+16=0相外切.
(1)求m的值;
(2)若圓C1與x軸的正半軸交于點A,與y軸的正半軸交于點B,P為第三象限內(nèi)一點且在圓C1上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2+x-6=0},B={x|ax+1=0},若A∪B=A,求實數(shù)a的取值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義在R上的偶函數(shù)滿足f(x-1)=f(x+1),且在x∈[-1,0]時,f(x)=($\frac{1}{2}$)x-1.若關(guān)于x的方程f(x)-loga(x+1)=0(a>1)在x∈(-1,3]上恰有3個不同的實數(shù)根,則實數(shù)a的取值范圍為(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上每隔1小時抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別做記錄,抽查數(shù)據(jù)如下:
甲車間:102,101,99,98,103,98,99;
乙車間:110,115,90,85,75,115,110.
問:(1)這種抽樣是何種抽樣方法;
(2)估計甲、乙兩車間包裝產(chǎn)品的質(zhì)量的均值與方差,并說明哪個均值的代表性好,哪個車間包裝產(chǎn)品的質(zhì)量較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}滿足:a2=3,a5-2a3+1=0.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足:{bn}=(-1)nan+n(n∈N*),求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={-3},B={x|ax+1=0},若B⊆A,求實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.過點$(2\sqrt{2},0)$直線l與曲線$y=\sqrt{4-{x^2}}$交于A,B兩點,O為坐標原點,當(dāng)△ABO的面積取最大值時,直線l的斜率等于-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案