12.函數(shù)$y=2sin(x+\frac{π}{6})$,$x∈[\frac{π}{6},\frac{2π}{3}]$的值域是[1,2].

分析 由x的取值范圍,求出相位的取值范圍,從而求出函數(shù)$y=2sin(x+\frac{π}{6})$的值域.

解答 解:∵$x∈[\frac{π}{6},\frac{2π}{3}]$,
∴x+$\frac{π}{6}$∈[$\frac{π}{3}$,$\frac{5}{6}$π];
∴sin(x+$\frac{π}{6}$)∈[$\frac{1}{2}$,1];
∴y=2sin(x+$\frac{π}{6}$)∈[1,2].
故答案為:[1,2].

點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)自變量的取值范圍,求出函數(shù)y=2sin(x+$\frac{π}{6}$)的值域,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,已知B=60°,C=45°,BC=8,AD⊥BC于D,則AD長為4(3-$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一個(gè)盒子中裝有5個(gè)編號(hào)依次為1、2、3、4、5的球,這5個(gè)球除號(hào)碼外完全相同,有放回的連續(xù)抽取兩次,每次任意地取出一個(gè)球.
(1)用列表或畫樹狀圖的方法列出所有可能結(jié)果.       
(2)求事件A=“取出球的號(hào)碼之和不小于6”的概率.     
(3)設(shè)第一次取出的球號(hào)碼為x,第二次取出的球號(hào)碼為y,求事件B=“點(diǎn)(x,y)落在直線 y=x+1上”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.圓(x+2)2+(y+3)2=2的圓心和半徑分別是( 。
A.(-2,3),1B.(2,-3),3C.(-2,-3),$\sqrt{2}$D.(2,-3),$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知橢圓C:$\frac{x^2}{16}+\frac{y^2}{9}=1$,斜率為1的直線與橢圓交于A,B.則線段AB的中點(diǎn)軌跡方程為$9x+16y=0({-\frac{16}{5}≤x≤\frac{16}{5}})或({-\frac{9}{5}≤y≤\frac{9}{5}})或(橢圓內(nèi)部)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.f($\sqrt{x}$+1)=x+3,則f(x)=x2-2x+4,(x≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)在△ABC中,sin2A=sin2B-sin2C-sinAsinC,求角B的大。
(2)已知$\overrightarrow{OC}={a_{1008}}\overrightarrow{OA}+{a_{1009}}\overrightarrow{OB}$,且A、B、C三點(diǎn)共線,O、A、B三點(diǎn)不共線,求等差數(shù)列{an}的前2016項(xiàng)的和S2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在?ABCD中,$\overrightarrow{AD}$=(3,7),$\overrightarrow{AB}$=(-2,3),對(duì)角線交點(diǎn)為O,則$\overrightarrow{CO}$等于(-$\frac{1}{2}$,-5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.己知a=${∫}_{0}^{\frac{π}{2}}$($\frac{1}{2}$-sin2$\frac{x}{2}$)dx,則(ax+$\frac{1}{2ax}$)9展開式中,x的一次項(xiàng)系數(shù)為( 。
A.-$\frac{63}{16}$B.$\frac{63}{16}$C.-$\frac{63}{8}$D.$\frac{63}{8}$

查看答案和解析>>

同步練習(xí)冊答案