A. | $\frac{{x}^{2}}{9}+{y}^{2}$=1 | B. | $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1 | ||
C. | $\frac{{x}^{2}}{9}+{y}^{2}$=1或 $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}$=1 | D. | $\frac{{x}^{2}}{81}+\frac{{y}^{2}}{9}$=1 |
分析 分橢圓的焦點(diǎn)在x軸上和焦點(diǎn)在y軸上兩種情況加以討論,分別設(shè)出橢圓標(biāo)準(zhǔn)方程,由題意求得a和b的值,即可求得橢圓方程.
解答 解:當(dāng)橢圓的焦點(diǎn)在x軸上,設(shè)橢圓方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
由題意可知:a=3,則b=1,
∴橢圓方程為:$\frac{{x}^{2}}{9}+{y}^{2}=1$,
當(dāng)橢圓的焦點(diǎn)在y軸上,設(shè)橢圓方程為:$\frac{{x}^{2}}{^{2}}+\frac{{y}^{2}}{{a}^{2}}=1$(a>b>0),
由題意可知:b=3,則a=9,
則橢圓方程為:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{81}=1$,
故答案選:C.
點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),考查分類討論思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{3}{2}$,0) | B. | [-1,0)∪(0,1] | C. | (0,1] | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (0,1) | C. | ($\frac{1}{2}$,1) | D. | (1,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com